首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
15‐Cyano‐12‐oxopentadecano‐15‐lactone was synthesized in 59% total yield starting from 2‐nitrocyclododecanone by Michael addition to acrylaldehyde, followed by reaction with trimethylsilylcyanide, hydrolysis, ring‐expansion, and Nef reaction. A two‐step, one‐pot synthesis of intermediate 2‐hydroxy‐4‐(1‐nitro‐2‐oxycyclododecyl)butanenitrile from 3‐(1‐nitro‐2‐oxocyclododecyl)propanal was developed and the conditions for the Nef reaction were studied. 15‐Cyano‐12‐oxopentadecano‐15‐lactam was synthesized in 40% total yield starting from 2‐nitrocyclododecanone by Michael addition to acrylaldehyde, followed by Strecker reaction, ring‐expansion, and Nef reaction. The conditions for the Strecker and Nef reactions were studied. The structures of the target compounds, intermediates, and by‐product were characterized by IR, 1H‐ and 13C‐NMR, and elemental analysis or MS.  相似文献   

2.
The kinetics of the thermal rearrangement 4‐ethyl‐3,5‐diphenyl‐4H‐1,2,4‐triazoles, 1 , to the corresponding 1‐ethyl‐3,5‐diphenyl‐1‐alkyl‐1H‐1,2,4‐triazoles, 2 , was studied in 15‐Crown‐5 and octadecane at 330 °C. The reaction was very slow in octadecane but proceed well in 15‐Crown‐5. The reaction order for the reaction was not constant but changed from an initial second order rate law towards a first order rate law as the reaction progressed. This was confirmed by the concentration dependent reaction order, nc, which was larger than the time dependent rate law, nt. The rationale for the observation was, that at high substrate concentrations the reaction order was second order while at lower concentrations a competing solvent assisted reaction plays an increasing important role. The data were in agreement with a mechanism in which the neutral 4‐alkyl‐triazoles in an intermolecular nucleophilic displacement reaction form a triazolium triazolate, which in a subsequent nucleophilic reaction gives the observed product.  相似文献   

3.
The hitherto unreported, highly functionalized 1H‐pyrazole‐3‐carboxylates 3 have been synthesized in good yields via a one‐pot three‐component domino reaction of phenylhydrazines, dialkyl acetylenedicarboxylates, and ninhydrin under mild conditions for the first time. No co‐catalyst or activator is required for this multicomponent reaction, and the reaction is, from an experimental point of view, simple to perform (Scheme 1). The structures of compounds 3 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization/addition reaction is proposed (Scheme 2).  相似文献   

4.
4‐Ethoxycarbonyl‐5‐phenyl‐2,3‐dihydrofuran‐2,3‐dione 1 reacts with aldehydes via the acylketene intermediate 2 giving the 1,3‐dioxin‐4‐ones 3a‐e and the 1,4‐bis(5‐ethoxycarbonyl‐4‐oxo‐6‐phenyl‐4H‐1,3‐dioxin‐2‐yl)benzene 4 , and a one step reaction between dibenzoylmethane and oxalylchloride gave 3,5‐dibenzoyl‐2,6‐diphenyl‐4‐pyrone 7 . The reaction of 1 with dibenzoylmethane, a dicarbonyl compound, provided ethyl 3‐benzoyl‐4‐oxo‐2,6‐diphenylpyran‐5‐carboxylate derivative 9 . Compound 9 was converted into the corresponding ethyl 3‐benzoyl‐4‐hydroxy‐2,6‐diphenylpyridine‐5‐carboxylate derivative 10 via its reaction with ammonium hydroxyde solution in 1 ‐butanol.  相似文献   

5.
A facile synthesis of trans isomers of 4‐aryl‐3‐methyl‐6‐oxo‐4,5,6,7‐tetrahydro ‐ 2H ‐ pyrazolo[3,4‐b]pyridine‐5‐carbonitriles via three‐component condensation reaction of an aldehyde, 3‐amino‐5‐methylpyrazole and ethyl cyanoacetate in acetonitrile has been developed under microwave irradiation. This one‐pot reaction proceeds without any catalyst in short times and gives the product in high selectivities and high yields.  相似文献   

6.
The reaction of the alkylhydrazinoquinoxaline N‐oxides 2a‐d with dimethyl acetylenedicarboxylate gave the dimethyl 1‐alkyl‐1,5‐dihydropyridazino[3,4‐b]qumoxaline‐3,4‐dicarboxylates 3a‐d , whose reaction with nitrous acid effected the C4‐oxidation to afford the dimethyl 1‐alkyl‐4‐hydroxy‐1,4‐dihydropyridazino‐[3,4‐b]quinoxaline‐3,4‐dicarboxylates 4a‐d , respectively. The reaction of compounds 4a‐d with 1,8‐diazabicyclo[5.4.0]‐7‐undecene in ethanol provided the ethyl 1‐alkyl‐4‐oxo‐1,4‐dihydropyridazino[3,4‐b]quinoxa‐line‐3‐carboxylates 5a‐d , while the reaction of compounds 4a‐d with potassium hydroxide furnished the 1‐alkyl‐4‐oxo‐1,4‐dihydropyridazino[3,4‐b]quinoxaline‐3‐carboxylic acids 6a‐d , respectively. Compounds 6c,d were also obtained by the reaction of compounds 5c,d with potassium hydroxide, respectively.  相似文献   

7.
Highly reactive 1 : 1 intermediates were produced in the reaction of Ph3P and dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates). Protonation of these intermediates by alcohols (2,2,2‐trichloroethanol, propargyl alcohol (=prop‐2‐yn‐1‐ol), MeOH, benzyl alcohol, and allyl alcohol (=prop‐2‐en‐1‐ol) led to vinyltriphenylphosphonium salts 4 , which underwent a Michael addition reaction with the conjugate base to produce the corresponding stabilized phosphonium ylides 5 (Scheme). Wittig reaction of the stabilized phosphonium ylides with ninhydrin ( 6 ) led to the corresponding densely functionalized 2H‐indeno[2,1‐b]furans 10 in fairly good yields (Table 1). The structures of the final products were confirmed by IR, 1H‐ and 13C‐NMR spectroscopy, and mass spectrometry. The configuration of dimethyl 8,8a‐dihydro‐8‐oxo‐8a‐(2,2,2‐trichloroethoxy)‐2H‐indeno[2,1‐b]furan‐2,3‐dicarboxylate ( 10a ) was established by a single‐crystal X‐ray structure determination, establishing that the one‐pot multicomponent condensation reaction was completely diastereoselective.  相似文献   

8.
The reaction of 1H‐imidazole‐4‐carbohydrazides 1 , which are conveniently accessible by treatment of the corresponding esters with NH2NH2?H2O, with isothiocyanates in refluxing EtOH led to thiosemicarbazides (=hydrazinecarbothioamides) 4 in high yields (Scheme 2). Whereas 4 in boiling aqueous NaOH yielded 2,4‐dihydro‐3H‐1,2,4‐triazole‐3‐thiones 5 , the reaction in concentrated H2SO4 at room temperature gave 1,3,4‐thiadiazol‐2‐amines 6 . Similarly, the reaction of 1 with butyl isocyanate led to semicarbazides 7 , which, under basic conditions, undergo cyclization to give 2,4‐dihydro‐3H‐1,2,4‐triazol‐3‐ones 8 (Scheme 3). Treatment of 1 with Ac2O yielded the diacylhydrazine derivatives 9 exclusively, and the alternative isomerization of 1 to imidazol‐2‐ones was not observed (Scheme 4). It is important to note that, in all these transformations, the imidazole N‐oxide residue is retained. Furthermore, it was shown that imidazole N‐oxides bearing a 1,2,4‐triazole‐3‐thione or 1,3,4‐thiadiazol‐2‐amine moiety undergo the S‐transfer reaction to give bis‐heterocyclic 1H‐imidazole‐2‐thiones 11 by treatment with 2,2,4,4‐tetramethylcyclobutane‐1,3‐dithione (Scheme 5).  相似文献   

9.
Stereochemical course of the reaction of homophthalic anhydride and N‐(1‐methyl‐1H‐pyrrol‐2‐yl‐methylidene)‐phenethylamine was studied. Mixtures of the expected trans‐ and cis‐1,2,3,4‐tetrahydroiso‐quinoline‐4‐carboxylic acids trans‐ 4 and cis‐ 4 were obtained along with by‐products 5 and 6 . The ratios of all products and the diastereomers, obtained under different reaction conditions, were established by pmr. THF as a solvent and ultrasonic treatment are applied for the first time in the reaction of this type. The reaction was made diastereoselective towards any isomer. The carboxylic group of trans‐ 4 was transformed in four steps into various cyclic amino‐methyl groups yielding numerous new tetrahydroisoquinolinones trans‐ 10a‐i incorporating a given fragment of pharmacological interest. Reduction of 10a‐i was studied.  相似文献   

10.
The reaction of the quinoxaline N‐oxides 7a,b with diethyl ethoxymethylenemalonate gave the 1‐methylpyridazino[3,4‐b]quinoxaline‐4,4‐dicarboxylates 8a,b , whose reaction with N‐bromosuccinimide or N‐chlorosuccinimide afforded the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxaline‐4,4‐dicarboxylates 9a‐d. The reaction of compounds 9a‐d with hydrazine hydrate resulted in hydrolysis and decarboxylation to provide the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxaline‐4‐carboxylates 10a‐d , whose reaction with nitrous acid effected oxidation to furnish the 3‐halogeno‐4‐hydroxy‐1‐methylpyridazino[3,4‐b]quinoxaline‐4‐carboxylates 11a‐d , respectively. The reaction of compounds 11a‐d with hydrazine hydrate afforded the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxalin‐4‐ols 12a‐d , whose oxidation provided the 3‐halogeno‐1‐methylpyridazino[3,4‐b]quinoxalin‐4(1H)‐ones 6a‐d , respectively. Compounds 6a‐d had antifungal activities in vitro.  相似文献   

11.
In this research, we have developed an efficient three‐component reaction for the synthesis of pyrano[3,2‐c]pyridine derivatives from the reaction of aromatic aldehydes, tert‐butyl 2,4‐dioxopiperidine‐1‐carboxylate, and N‐methyl‐1‐(methylthio)‐2‐nitroethylen‐1‐amine in [BMIM]BF4 medium. The advantages of this method were readily available starting materials, simple reaction conditions, and satisfactory yields.  相似文献   

12.
The cyclization of phenacyl anthranilate has been studied with the aim to develop the synthesis of 2‐(2′‐aminophenyl)‐4‐phenyloxazole. However, a different course of the reaction than expected was observed. 2‐Phenyl‐2‐hydroxymethyl‐4‐oxo‐1,2,3,4‐tetrahydroquinazoline ( 3a ) was formed by the reaction of phenacyl anthranilate ( 2 ) with ammonium acetate under various conditions. 3‐Hydroxy‐2‐phenyl‐4(1H)‐quinolinone ( 4 ) arose by heating compound 3a in acetic acid. The same compound was obtained by melting compound 3a , but the yield was lower. Different types of products resulted in the reaction of compound 3a with acetic anhydride. Under mild conditions acetylated products 2‐acetoxymethyl‐2‐phenyl‐4‐oxo‐1,2,3,4‐tetrahydroquinazoline ( 7a ) and 2‐acetoxymethyl‐3‐acetyl‐2‐phenyl‐4‐oxo‐1,2,3,4‐tetrahydroquinazoline ( 8 ) were prepared. If the reaction was carried out under reflux of the reaction mixture, molecular rearrangement took place to give cis and trans 2‐methyl‐4‐oxo‐3‐(1‐phenyl‐2‐acetoxy)vinyl‐3,4‐dihydroquinazolines ( 9a and 9b ). All prepared compounds have been characterised by their 1H, 13C and 15N NMR spectra, IR spectra and MS.  相似文献   

13.
A novel Cu(OAc)2·H2O catalyzed coupling reaction of N‐substituted‐2‐iodobenzamides with malononitrile to afford N‐substituted‐3‐amino‐4‐cyano‐isoquinoline‐1(2H)‐ones is described. The reaction proceeded in DMSO at 90°C for 5 h in nitrogen without external ligands.  相似文献   

14.
The synthesis and reactivity studies of 4‐hydroxy‐6‐methyl‐3‐(5‐phenyl‐2E,4E‐pentadien‐1‐oyl)‐2H‐pyran‐2‐one 2 with nucleophiles are reported. Reactions of 2 with hydrazine derivatives gave new pyrazole‐type com pounds while the reaction with ortho‐phenylenediamines yielded 1,5‐benzodiazepines. The reaction of 2 with ethylamine implies the 2H‐pyran‐2‐one ring opening and the formation of a strong conjugated compound 3.  相似文献   

15.
The stereoselective total synthesis of an antiproliferative and antifungal α‐pyrone natural product (6S)‐5,6‐dihydro‐6‐[(2R)‐2‐hydroxy‐6‐phenylhexyl]‐2H‐pyran‐2‐one is described. The key steps involved are the Prins cyclization, Mitsunobu reaction, and ring‐closing metathesis reaction.  相似文献   

16.
The three‐component Biginelli‐like cyclocondensation reaction of enamines 1 , urea, and aldehydes in dioxane/acetic acid efficiently afforded the corresponding 6‐unsubstituted 3,4‐dihydropyrimidin‐2(1H)‐ones 2 in good yields (Scheme 1, Table). The corresponding reaction of azaenamine (=hydrazone) 7 with benzaldehyde and urea afforded 6‐acetyl‐1,2,4‐triazin‐3(2H)‐ones in good yields (Scheme 3).  相似文献   

17.
An efficient method for the synthesis of N‐alkylated 2‐(4‐substituted‐1H‐1,2,3‐triazol‐1‐yl)‐1H‐indole‐3‐carbaldehyde has been developed starting from oxindole and indole using Huisgen's 1,3‐dipolar cycloaddition reaction of organic azides to alkynes. The effect of catalysts and solvent on these reactions has been investigated. Among all these conditions, while using CuSO4·5H2O, DMF was found to be the best system for this reaction. It could also be prepared in a one‐pot three‐component manner by treating equimolar quantities of halides, azides, and alkynes. The Huisgen's 1,3‐dipolar cycloaddition reaction was performed using CuSO4·5H2O in DMF with easy work‐up procedure.  相似文献   

18.
Dihydroxyl capped biodegradable poly(DTC‐b‐PEG‐b‐DTC) (BCB) triblock copolymer and poly(TMC‐b‐DTC‐b‐PEG‐b‐DTC‐b‐TMC) (ABCBA) pentablock copolymer have been synthesized by PEG and BCB copolymer as macroinitiator in the presence of yttrium tris(2,6‐di‐tert‐butyl‐4‐methylphenolate). The copolymers without random segments have been thoroughly characterized by 1H, 13C‐NMR, SEC, and DSC. Molecular weights of the obtained copolymers are dependent on the amount of PEGs and coincide with the theoretical values. The exchange reaction of yttrium alkoxide and hydroxyl end group is essential for controlling the products' molecular weight. Their thermal behaviors are relevant to the chain lengths of PEG and PDTC segments. The Monte Carlo method has been developed to estimate the chain propagation constant and exchange reaction constant. In average, one exchange reaction will occur after approximately six monomer molecules insert into the growing chain. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1787–1796, 2005  相似文献   

19.
An eco‐friendly method has been developed for the synthesis of 2‐amino‐4‐(9H‐carbazole‐3‐yl)thiophene‐3‐carbonitriles from preliminary carbazole ( 1 ) through an intermediate of 2‐(1‐(9H‐carbazole‐3‐yl)ethylidene)malononitriles using the Knoevenagel condensation followed by the Gewald reaction. On the other hand, the target compounds could also be prepared in a one‐pot three‐component manner by treating equimolar quantities of 1‐(9H‐carbazole‐3‐yl)ethanone ( 3 ), malononitrile, and elemental sulfur. The merits of this preparation are mild reaction conditions. The Gewald reaction is executed with inorganic base NaHCO3 (H2O) in tetrahydrofuran, easy work‐up procedure with good yields.  相似文献   

20.
The unprecedented phospha‐aza‐Diels–Alder reaction between an activated electron‐poor imine and 2H‐phospholes yields 1‐phospha‐2‐azanorbornenes in a highly chemoselective and moderately diastereoselective reaction. The intermediate 2H‐phospholes, which act as dienes, are formed in situ from the corresponding 1H‐phospholes. Theoretical calculations confirm that the phospha‐aza‐Diels–Alder reaction is of normal electron demand. The reactive P?N bond in 1‐phospha‐2‐azanorbornenes can be cleaved by nucleophiles leading to the formation of 2,3‐dihydrophospholes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号