首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A series of trans‐(Cl)‐[Ru(L)(CO)2Cl2]‐type complexes, in which the ligands L are 2,2′‐bipyridyl derivatives with amide groups at the 5,5′‐positions, are synthesized. The C‐connected amide group bound to the bipyridyl ligand through the carbonyl carbon atom is twisted with respect to the bipyridyl plane, whereas the N‐connected amide group is in the plane. DFT calculations reveal that the twisted structure of the C‐connected amide group raises the level of the LUMO, which results in a negative shift of the first reduction potential (Ep) of the ruthenium complex. The catalytic abilities for CO2 reduction are evaluated in photoreactions (λ>400 nm) with the ruthenium complexes (the catalyst), [Ru(bpy)3]2+ (bpy=2,2′‐bipyridine; the photosensitizer), and 1‐benzyl‐1,4‐dihydronicotinamide (the electron donor) in CO2‐saturated N,N‐dimethylacetamide/water. The logarithm of the turnover frequency increases by shifting Ep a negative value until it reaches the reduction potential of the photosensitizer.  相似文献   

2.
A π‐conjugated polymer containing a dithiafulvene unit and a bipyridyl unit was prepared by cycloaddition polymerization of aldothioketene derived from 5,5′‐diethynyl‐2,2′‐bipyridine. Ultraviolet–visible (UV–vis) absorption spectra showed that the π‐conjugation system of the polymer expanded more effectively than that of a benzene analogue of poly(dithiafulvene) obtained from 1,4‐diethynylbenzene. Cyclic voltammetry measurements indicated that the dithiafulvene–bipyridyl polymer was a weaker electron‐donor polymer than the benzene analogue. These results supported the idea that the incorporation of the electron‐accepting bipyridyl moiety into conjugated poly(dithiafulvene) induced an intramolecular charge‐transfer (CT) effect between the units. Treatment of the dithiafulvene–bipyridyl polymer with bis(2,2′‐bipyridyl)dichlororuthenium (II) [Ru(bpy)2Cl2] afforded a ruthenium–polymer complex. A cyclic voltammogram of the complex showed broad redox peaks, which indicated electronic interaction between the dithiafulvene and tris(bipyridyl) ruthenium complex. The dithiafulvene–bipyridyl polymer formed CT complexes with 7,7,8,8‐tetracycanoquinodimethane (TCNQ) in dimethyl sulfoxide. The UV–vis absorption indicated that the resulting CT complex contained anion radical of TCNQ and partially charge‐transferred TCNQ. The polymer showed an unusually high electrical conductivity of 3.1 × 10?4 S/cm in its nondoped state due to the effective donor–acceptor interaction between the bipyridine unit and the dithiafulvene unit. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4083–4090, 2001  相似文献   

3.
The synthesis of a number of new 2,2′‐bipyridine ligands functionalized with bulky amino side groups is reported. Three homoleptic polypyridyl ruthenium (II) complexes, [Ru(L)3]2+ 2(PF6?), where L is 4,4′‐dioctylaminomethyl‐2,2′‐bipyridine (Ru4a), 4,4′‐didodecylaminomethyl‐2,2′‐bipyridine (Ru4b) and 4,4′‐dioctadodecylaminomethyl‐2,2′‐bipyridine (Ru4c), have been synthesized. These compounds were characterized and their photophysical properties examined. The electronic spectra of three complexes show pyridyl π → π* transitions in the UV region and metal‐to‐ligand charge transfer bands in the visible region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
A terpyridine derivative DPTP [di-(4-methylphenyl)-2,2':6',2"-terpyridine] was conveniently synthesized from 2-bromopyridine via halogen-dance reaction, Kharash coupling and Stille coupling reaction. Then its corresponding ruthenium complex Ru-DPTP [N,N,N-4,4''-di-(4-methy,phenyl)-2,2':6',2"-terpyridine-N,N,N-tris(is,-thi,cyanat,)- ruthenium(H) ammonium] was obtained and fully characterized by IR, UV-Vis, ESI MS and elemental analysis. The MLCT absorption band of Ru-DPTP was blue-shifted from 570 to 500 nm upon addition of Hg^2+. Among a series of surveyed metal ions, the complex showed a unique recognition to Hg^2+, indicating that it can be used as a selective colorimetric sensor for Hg^2+.  相似文献   

5.
The aldehyde moiety in the title complex, chloro(2‐pyridinecarboxaldehyde‐N,O)(2,2′:6′,2′′‐terpyridine‐κ3N)ruthenium(II)–chloro­(2‐pyridine­carboxyl­ic acid‐N,O)(2,2′:6′,2′′‐ter­pyridine‐κ3N)­ruthenium(II)–perchlorate–chloro­form–water (1.8/0.2/2/1/1), [RuCl­(C6H5NO)­(C15H11N3)]1.8[RuCl­(C6H5­NO2)(C15H11N3)]0.2­(ClO4)2·­CHCl3·­H2O, is a structural model of substrate coordination to a transfer hydrogenation catalyst. The title complex features two independent RuII complex cations that display very similar distorted octahedral coordination provided by the three N atoms of the 2,2′:6′,2′′‐ter­pyridine ligand, the N and O atoms of the 2‐pyridine­carbox­aldehyde (pyCHO) ligand and a chloride ligand. One of the cation sites is disordered such that the aldehyde group is replaced by a 20 (1)% contribution from a carboxyl­ic acid group (aldehyde H replaced by carboxyl O—H). Notable dimensions in the non‐disordered complex cation are Ru—N 2.034 (2) Å and Ru—O 2.079 (2) Å to the pyCHO ligand and O—C 1.239 (4) Å for the pyCHO carbonyl group.  相似文献   

6.
Diastereomeric geminate pairs of chiral bis(2‐oxazoline) ruthenium complexes with bipyridyl‐type N‐heteroaromatics, Λ‐ and Δ‐[Ru(L‐ L)2(iPr‐biox)]2+ (iPr‐biox=(4S,4′S)‐4,4′‐diisopropyl‐2,2′‐bis(2‐oxazoline); L‐ L=2,2′‐bipyridyl (bpy) for 1 Λ and 1 Δ, 4,4′‐dimethyl‐2,2′‐bipyridyl (dmbpy) for 2 Λ and 2 Δ, and 1,10‐phenanthroline (phen) for 3 Λ and 3 Δ), were separated as BF4 and PF6 salts and were subjected to the comparative studies of their stereochemical and photochemical characterization. DFT calculations of 1 Λ and 1 Δ electronic configurations for the lowest triplet excited state revealed that their MO‐149 (HOMO) and MO‐150 (lower SOMO) characters are interchanged between them and that the phosphorescence‐emissive states are an admixture of a Ru‐to‐biox charge‐transfer state and an intraligand excited state within the iPr‐biox. Furthermore, photoluminescence properties of the two Λ,Δ‐diastereomeric series are discussed with reference to [Ru(bpy)3]2+.  相似文献   

7.
Crystal structures are reported for four (2,2′‐bipyridyl)(ferrocenyl)boronium derivatives, namely (2,2′‐bipyridyl)(ethenyl)(ferrocenyl)boronium hexafluoridophosphate, [Fe(C5H5)(C17H15BN2)]PF6, (Ib), (2,2′‐bipyridyl)(tert‐butylamino)(ferrocenyl)boronium bromide, [Fe(C5H5)(C19H22BN3)]Br, (IIa), (2,2′‐bipyridyl)(ferrocenyl)(4‐methoxyphenylamino)boronium hexafluoridophosphate acetonitrile hemisolvate, [Fe(C5H5)(C22H20BN3O)]PF6·0.5CH3CN, (IIIb), and 1,1′‐bis[(2,2′‐bipyridyl)(cyanomethyl)boronium]ferrocene bis(hexafluoridophosphate), [Fe(C17H14BN3)2](PF6)2, (IVb). The asymmetric unit of (IIIb) contains two independent cations with very similar conformations. The B atom has a distorted tetrahedral coordination in all four structures. The cyclopentadienyl rings of (Ib), (IIa) and (IIIb) are approximately eclipsed, while a bisecting conformation is found for (IVb). The N—H groups of (IIa) and (IIIb) are shielded by the ferrocenyl and tert‐butyl or phenyl groups and are therefore not involved in hydrogen bonding. The B—N(amine) bond lengths are shortened by delocalization of π‐electrons. In the cations with an amine substituent at boron, the B—N(bipyridyl) bonds are 0.035 (3) Å longer than in the cations with a methylene C atom bonded to boron. A similar lengthening of the B—N(bipyridyl) bonds is found in a survey of related cations with an oxy group attached to the B atom.  相似文献   

8.
Ruthenium polypyridyl complexes are widely used as light harvesters in dye‐sensitized solar cells. Since one of the potential applications of single‐wall carbon nanotubes (SWCNTs) and their derived materials is their use as active components in organic and hybrid solar cells, the study of the photochemistry of SWCNTs with tethered ruthenium polypyridyl complexes is important. A water‐soluble ruthenium tris(bipyridyl) complex linked through peptidic bonds to SWCNTs (Ru‐SWCNTs) was prepared by radical addition of thiol‐terminated SWCNT to a terminal C?C double bond of a bipyridyl ligand of the ruthenium tris(bipyridyl) complex. The resulting macromolecular Ru‐SWCNT (≈500 nm, 15.6 % ruthenium complex content) was water‐soluble and was characterized by using TEM, thermogravimetric analysis, chemical analysis, and optical spectroscopy. The emission of Ru‐SWCNT is 1.6 times weaker than that of a mixture of [Ru(bpy)3]2+ and SWCNT of similar concentration. Time‐resolved absorption optical spectroscopy allows the detection of the [Ru(bpy)3]2+‐excited triplet and [Ru(bpy)3]+. The laser flash studies reveal that Ru‐SWCNT exhibits an unprecedented two‐photon process that is enabled by the semiconducting properties of the SWCNT. Thus, the effect of the excitation wavelength and laser power on the transient spectra indicate that upon excitation of two [Ru(bpy)3]2+ complexes of Ru‐SWCNT, a disproportionation process occurs leading to delayed formation of [Ru(bpy)3]+ and the performance of the SWCNT as a semiconductor. This two‐photon delayed [Ru(bpy)3]+ generation is not observed in the photolysis of [Ru(bpy)3]3+; SWCNT acts as an electron wire or electron relay in the disproportionation of two [Ru(bpy)3]2+ triplets in a process that illustrates that the SWCNT plays a key role in the process. We propose a mechanism for this two‐photon disproportionation compatible with i) the need for high laser flux, ii) the long lifetime of the [Ru(bpy)3]2+ triplets, iii) the semiconducting properties of the SWNT, and iv) the energy of the HOMO/LUMO levels involved.  相似文献   

9.
The two isoelectronic bipyridyl derivatives [2,2′‐bipyridyl]‐3,3′‐diamine and [2,2′‐bipyridyl]‐3,3′‐diol are experimentally known to undergo very different excited‐state double‐proton‐transfer processes, which result in fluorescence quantum yields that differ by four orders of magnitude. In a previous study, these differences were explained from a theoretical point of view, because of topographical features in the potential energy surface and the presence of conical intersections (CIs). Here, we analyze the photochemical properties of a new molecule, [2,2′‐bipyridyl]‐3‐amine‐3′‐ol [BP(OH)(NH2)], which is, in fact, a hybrid of the former two. Our density functional theory (DFT), time‐dependent DFT (TDDFT), and complete active space self‐consistent field (CASSCF) calculations indicate that the double‐proton‐transfer process in the ground and first singlet π→π* excited state in BP(OH)(NH2) presents features that are between those of their “parents”. The presence of two CIs and the role they may play in the actual photochemistry of BP(OH)(NH2) and other bipyridyl derivatives are also discussed.  相似文献   

10.
A highly sensitive reversed‐phase liquid chromatographic (HPLC) method was investigated to analyze a range of positron emission tomography (PET) radiopharmaceuticals using electrogenerated chemiluminescence (ECL) detection. ECL is based on the reaction of PET molecules with tris(2,2′‐bipyridyl)ruthenium(III) [Ru(bpy)33+], which is generated through the on‐line electro‐oxidation of Ru(bpy)32+. In 21 different radiopharmaceuticals studied, 18 compounds could be detected with detection limits (signal‐to‐noise ratio = 3) of 0.12–72 ng/mL per 20 μL injection. Sufficient reproducibility and linearity were obtained for the quantitative determination of PET molecules in pharmaceutical fluid. This method could be successfully applied to quality control tests of PET radiopharmaceuticals with ultra‐high specific radioactivity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
《Electroanalysis》2006,18(3):275-281
Mesoporous V2O5/Nafion composite films have been used for the immobilization of tris(2,2′‐bipyridyl)ruthenium (II) (Ru(bpy) ) on an electrode surface to yield a solid‐state electrogenerated chemiluminescence (ECL) sensor. The electrochemical and ECL behavior of Ru(bpy) ion‐exchanged into the composite films has been characterized as a function of the amount of Nafion incorporated into the V2O5/Nafion composite. The composite film with 80% Nafion content has the largest pore diameter (4.19 nm) and yields the maximum ECL response for tripropylamine (TPA) because of the fast diffusion of analyte into the film with large pores. Due to the enlarged pore size and enhanced conductivity of the V2O5/Nafion composite, the present ECL sensor based on the composite films exhibited around 2 orders of magnitude higher ECL response and one order of magnitude lower detection limit for TPA (10 nM) compared to those obtained with the ECL sensors based on other types of sol–gel ceramic/Nafion composite films such as SiO2/Nafion and TiO2/Nafion.  相似文献   

12.
Polysiloxanes containing pendant tris(2,2′-bipyridine)ruthenium(II) complex (Ru(bpy)32+) were prepared by reaction of polysiloxane-pendant 2,2′-bipyridine (PSiO-bpy) with cis-Ru(bpy)2Cl2. In methanol solution, the polymer pendant Ru(bpy)32+ showed absorption maximum at 456nm and emission maximum at around 609nm, both of which are shifted to longer wavelength than the monomeric Ru(bpy)32+. The lifetime τ0 of the excited polymer complex with low Ru(bpy)32+ content was almost the same as that of the monomeric one in methanol (830ns), but τ0 of the polymer with higher complex content was shorter because of a concentration quenching. In a solid state, τ0 was much shorter (306–503ns) than that in a methanol solution contrary to the conventional polymeric system. Higher complex content in the polymer film caused higher glass transition temperature (Tg), but shorter τ0. These results indicate concentration quenching in the polymer film. The excited polymer pendant Ru(bpy)32+ was quenched by oxygen, and the relative emission intensity followed the Stern-Volmer equation. In a methanol solution the quenching rate constant (kq) was the same order of magnitude as the monomeric complex, and independent of the complex content in the polymer. In a film, kq was higher for the polymer with higher complex content.  相似文献   

13.
This work investigates the photoinduced energy transfer from poly(N‐vinylcarbazole) (PVK), as a donor material, to fac‐(2,2′‐bipyridyl)Re(CO)3Cl, as a catalyst acceptor, for its potential application towards CO2 reduction. Photoluminescence quenching experiments reveal dynamic quenching through resonance energy transfer in solid donor/acceptor mixtures and in solid/liquid systems. The bimolecular reaction rate constant at solution–film interfaces for the elementary reaction of the excited state with the quencher material could be determined as 8.8(±1.4)×1011 L mol?1 s?1 by using Stern–Volmer analysis. This work shows that PVK is an effective and cheap absorber material that can act efficiently as a redox photosensitizer in combination with fac‐(2,2′‐bipyridyl)Re(CO)3Cl as a catalyst acceptor, which might lead to possible applications in photocatalytic CO2 reduction.  相似文献   

14.
A series of polypyridine ruthenium complexes of the general formula {Ru(Rph‐tpy)[dppz(COOH)]Cl} PF6 with R = Br ( 1 ), Cl ( 2 ), NO2 ( 3 ) where Rph‐tpy is 4′‐(4‐Rphenyl‐2,2′:6′,2″‐terpyridine and dppz(COOH) is dipyrido[3,2‐a:2′,3′‐c]phenazine‐2‐carboxylic acid were prepared and characterized. These complexes display intense metal‐to‐ligand charge‐transfer (MLCT) bands centered about 500 nm. The effect of pH on the absorption spectra of these complexes consisting of protonatable ligands has been investigated in water solution by spectrophotometric titration. The electrochemistry shows oxidation potentials for the Ru(II)–Ru(III) couple at +0.881 ( 1 ), +0.907 ( 2 ) and +0.447 V ( 3 ), respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The title compound, [Ru(C13H11N4S)2(C15H8N2)2], has C2 symmetry, with bidentate 2,2′‐bipyridyl ligands dictating a cis geometry around the RuII center. The monodentate S‐bonded dithizone ligands are almost planar, except for one of the phenyl rings, which is twisted by 34.2 (4)° from the N/N/C(S)/N/N plane. The Ru—S bond length is 2.4140 (13) Å, and the Ru—N bond lengths are 2.048 (4) and 2.074 (4) Å.  相似文献   

16.
An approach was reported to synthesize silica hybridized ruthenium bipyridyl complex through amidation reaction by covalent attachment of bis(bipyridyl)-4,4'-dicarboxy-2,2'-bipyridyl-ruthenium to (3-aminopropyl)-triethoxysilane. The hybrid complex then was gelatinized through acid catalytic hydrolysis method and a sol-gel modified indium tin oxide electrode was prepared via spin coating technique. As prepared indium tin oxide electrode possesses good stability therein with excellent electrochemiluminescence behavior.  相似文献   

17.
In the title complex, [Ru(bpy)(dppy)2(CO)2](PF6)2 (bpy = 2,2′‐bipyridine, dppy = 2‐(diphenylphosphino)pyridine), the ruthenium atom exhibits a slightly distorted octahedral coordination with the carbonyl ligands in cis positions. In addition, two dppy ligands coordinate to the ruthenium center through the phosphorus atoms in mutually trans positions and two pyridyl nitrogen atoms of the dppy direct toward two carbonyl ligands. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The single‐crystal X‐ray structures of dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylate, C14H12N2O4, and the copper(I) coordination complex bis(dimethyl 2,2′‐bipyridine‐6,6′‐dicarboxylato‐κ2N,N′)copper(I) tetrafluoroborate, [Cu(C14H12N2O4)2]BF4, are reported. The uncoordinated ligand crystallizes across an inversion centre and adopts the anticipated anti pyridyl arrangement with coplanar pyridyl rings. In contrast, upon coordination of copper(I), the ligand adopts an arrangement of pyridyl donors facilitating chelating metal coordination and an increased inter‐pyridyl twisting within each ligand. The distortion of each ligand contrasts with comparable copper(I) complexes of unfunctionalized 2,2′‐bipyridine.  相似文献   

19.
The acid dissociation constant, pKa, for the ground and excited states of ruthenium tris(4′-methyl-2,2′-bipyridine-4-carboxylic acid) complex have been measured. The ground state pKa obtained from the pH titration curve of the complex absorption at 454 nm was 2.5. The lifetimes of the excited-state for deprotonated and protonated ruthenium complexes are 595 and 150 ns, respectively. The excited-state pKa* is obtained from the emission titration curve at 630 nm and corrected for the excited-state lifetime to be 4.2. The increase of 1.7 pH units in the acid dissociation constant in the excited-state indicates that the ligand is much more basic in the excited-state. This result confirms the MLCT assignment for the lowest electronic transition of [Ru(mbpyCOOH)3]2+.  相似文献   

20.
The zinc(II) coordination polymers [Zn(Htatb)(2,2′‐bipy) · (NMP) · H2O] ( 1 ) and [Zn3(tatb)2(2,2′‐bipy)3 · H2O] ( 2 ) (H3tatb = 4,4′,4′′‐s‐triazine‐2,4,6‐triyl‐tribenzoic acid; 2,2′‐bipy = 2,2′‐bipyridyl, NMP = N‐methyl‐2‐pyrrolidon), were synthesized hydrothermally, and characterized by infrared spectroscopy (IR), powder X‐ray diffraction (PXRD), and single‐crystal X‐ray diffraction. Both compounds 1 and 2 possess expectant low dimensional coordination structures, which further connected into interesting 3D networks by hydrogen bond and strong π–π interactions. Moreover, the thermal stabilities and fluorescent properties of 1 and 2 were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号