共查询到20条相似文献,搜索用时 0 毫秒
1.
Chang Yeon Lee Dr. Jae Kwon Jang Chul Hoon Kim Dr. Jaehoon Jung Bo Keun Park Dr. Jihee Park Wonyong Choi Prof. Young‐Kyu Han Dr. Taiha Joo Prof. Joon T. Park Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(19):5586-5599
A new artificial photosynthetic triad array, a [60]fullerene–triosmium cluster/zinc–porphyrin/boron–dipyrrin complex ( 1 , Os3C60/ZnP/Bodipy), has been prepared by decarbonylation of Os3(CO)8(CN(CH2)3Si(OEt)3)(μ3‐η2:η2:η2‐C60) ( 6 ) with Me3NO/MeCN and subsequent reaction with the isocyanide ligand CNZnP/Bodipy ( 5 ) containing zinc porphyrin (ZnP) and boron dipyrrin (Bodipy) moieties. Triad 1 has been characterized by various spectroscopic methods (MS, NMR, IR, UV/Vis, photoluminescence, and transient absorption spectroscopy). The electrochemical properties of 1 in chlorobenzene (CB) have been examined by cyclic voltammetry; the general feature of the cyclic voltammogram of 1 is nine reversible one‐electron redox couples, that is, the sum of those of 5 and 6 . DFT has been applied to study the molecular and electronic structures of 1 . On the basis of fluorescence‐lifetime measurements and transient absorption spectroscopic data, 1 undergoes an efficient energy transfer from Bodipy to ZnP and a fast electron transfer from ZnP to C60; the detailed kinetics involved in both events have been elucidated. The SAM of triad 1 ( 1 /ITO; ITO=indium–tin oxide) has been prepared by immersion of an ITO electrode in a CB solution of 1 and diazabicyclo‐octane (2:1 equiv), and characterized by UV/Vis absorption spectroscopy, water contact angle, X‐ray photoelectron spectroscopy, and cyclic voltammetry. The photoelectrochemical properties of 1 /ITO have been investigated by a standard three‐electrode system in the presence of an ascorbic acid sacrificial electron donor. The quantum yield of the photoelectrochemical cell has been estimated to be 29 % based on the number of photons absorbed by the chromophores. Our triad 1 is unique when compared to previously reported photoinduced electron‐transfer arrays, in that C60 is linked by π bonding with little perturbation of the C60 electron delocalization. 相似文献
2.
K. Venkata Rao Dr. K. K. R. Datta Prof. Muthusamy Eswaramoorthy Dr. Subi. J. George 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(8):2184-2194
Light‐harvesting hybrids have gained much importance as they are considered as potential mimics for photosynthetic systems. In this Concept article we introduce the design concepts involved in the building up of light‐harvesting hybrids; these resemble the well‐studied organic‐based assemblies for energy transfer. We have structured this article into three parts based on the strategies adopted in the synthesis of hybrid assemblies, as covalent, semicovalent, and noncovalent procedures. Furthermore, the properties and structural features of the hybrids and analogous organic assemblies are compared. We also emphasize the challenges involved in the processability of these hybrid materials for device applications and present our views and results to address this issue through the design of soft‐hybrids by a solution‐state, noncovalent, self‐assembly process. 相似文献
3.
4.
Dr. Núria Sancho Oltra Dr. Wesley R. Browne Dr. Gerard Roelfes 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(7):2457-2461
A new modular approach to an artificial light‐harvesting antenna system is presented. The approach involves the hierarchical self‐assembly of porphyrin acceptor molecules to G‐quadruplexes tethered to coumarin donor moieties. 相似文献
5.
Ultrafast Photoinduced Charge Separation in Wide‐Band‐Capturing Self‐Assembled Supramolecular Bis(donor styryl)BODIPY–Fullerene Conjugates 下载免费PDF全文
Shuai Shao Habtom B. Gobeze Prof. Dr. Paul A. Karr Prof. Dr. Francis D'Souza 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(45):16005-16016
A new series of self‐assembled supramolecular donor–acceptor conjugates capable of wide‐band capture, and exhibiting photoinduced charge separation have been designed, synthesized and characterized using various techniques as artificial photosynthetic mimics. The donor host systems comprise of a 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) containing a crown ether entity at the meso‐position and two styryl entities on the pyrrole rings. The styryl end groups also carried additional donor (triphenylamine or phenothiazine) entities. The acceptor host system was a fulleropyrrolidine comprised of an ethylammonium cation. Owing to the presence of extended conjugation and multiple chromophore entities, the BODIPY host revealed absorbance and emission well into the near‐IR region covering the 300–850 nm spectral range. The donor–acceptor conjugates formed by crown ether–alkyl ammonium cation binding of the host–guest system was characterized by optical absorbance and emission, computational, and electrochemical techniques. Experimentally determined binding constants were in the range of 1–2×105 M ?1. An energy‐level diagram to visualize different photochemical events was established using redox, computational, absorbance, and emission data. Spectral evidence for the occurrence of photoinduced charge separation in these conjugates was established from femtosecond transient absorption studies. The measured rates indicated ultrafast charge separation and relatively slow charge recombination revealing their usefulness in light‐energy harvesting and optoelectronic device applications. The bis(donor styryl)BODIPY‐derived conjugates populated their triplet excited states during charge recombination. 相似文献
6.
Yusuke Kuramochi Dr. Atula S. D. Sandanayaka Dr. Akiharu Satake Prof. Yasuyuki Araki Prof. Kazuya Ogawa Prof. Osamu Ito Prof. Yoshiaki Kobuke Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(10):2317-2327
A mimic for nature's solar cells : Simple mixing of nonaporphyrin macrocycle N‐( 1 –Zn)3 and acceptor ligand C60–ZnP–Tripod affords a supramolecular architecture (see scheme), in which the excitation energy collected by the macrocycle is transferred efficiently to the central ZnP acceptor, inducing charge separation between the ZnP and C60 sites.
7.
《Macromolecular rapid communications》2017,38(17)
In this study, a new type of functional, self‐assembled nanostructure formed from porphyrins and polyamidoamine dendrimers based on hydrogen bonding in an aqueous solution is presented. As the aggregates formed are promising candidates for solar‐energy conversion, their photocatalytic activity is tested using the model reaction of methyl viologen reduction. The self‐assembled structures show significantly increased activity as compared to unassociated porphyrins. Details of interaction forces driving the supramolecular structure formation and regulating catalytic efficiency are fundamentally discussed.
8.
Patricia Remón Cátia Parente Carvalho Dr. Carlos Baleizão Prof. Dr. Mario Nuno Berberan‐Santos Dr. Uwe Pischel 《Chemphyschem》2013,14(12):2717-2724
New C60 and C70 fullerene dyads formed with 4‐amino‐1,8‐naphthalimide chromophores have been prepared by the Bingel cyclopropanation reaction. The resulting monoadducts were investigated with respect to their fluorescence properties (quantum yields and lifetimes) to unravel the role of the charge‐transfer naphthalimide chromophore as a light‐absorbing antenna and excited‐singlet‐state sensitizer of fullerenes. The underlying intramolecular singlet–singlet energy transfer (EnT) process was fully characterized and found to proceed quantitatively (ΦEnT≈1) for all dyads. Thus, these conjugates are of considerable interest for applications in which fullerene excited states have to be created and photonic energy loss should be minimized. In polar solvents (tetrahydrofuran and benzonitrile), fluorescence quenching of the fullerene by electron transfer from the ground‐state aminonaphthalimide was postulated as an additional path. 相似文献
9.
Dr. Sheshanath V. Bhosale Dr. Steffen Hackbarth Prof. Steven J. Langford Dr. Sidhanath V. Bhosale 《化学:亚洲杂志》2012,7(1):176-182
A small series of variable‐depth yoctowell cavities with ′functional′ walls on aminated silica particles and gold electrodes has been established. The dimensions of the gaps formed were 2.2 nm in diameter with varying ′functional′ depths of 5, 10, and 15 Å, depending on the length of bolaphiles applied and the position of the positive rim; these gaps were prepared through a Michael addition of the incorporated ene‐amide groups. Using this construct and electrostatic interactions between the positive rim and anionic quinones as a means of immobilization, a porphyrin–quinone dyad system has been prepared. The distance between the donor and acceptor was changed systematically in aqueous solution, whilst maintaining a similar environment in each case. Upon photoexcitation of the porphyrin, efficient electron transfer occurs between the porphyrin and quinone units in a distance‐dependent manner on the nanosecond timescale. 相似文献
10.
Back Cover: Ultrafast Photoinduced Charge Separation in Wide‐Band‐Capturing Self‐Assembled Supramolecular Bis(donor styryl)BODIPY–Fullerene Conjugates (Chem. Eur. J. 45/2015) 下载免费PDF全文
Shuai Shao Habtom B. Gobeze Prof. Dr. Paul A. Karr Prof. Dr. Francis D'Souza 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(45):16284-16284
11.
12.
Dipl.‐Chem. Philipp Ensslen Fabian Brandl Dr. Sabrina Sezi Dr. Reji Varghese Dr. Roger‐Jan Kutta Prof. Dr. Bernhard Dick Prof. Dr. Hans‐Achim Wagenknecht 《Chemistry (Weinheim an der Bergstrasse, Germany)》2015,21(26):9349-9354
The chromophores ethynyl pyrene as blue, ethynyl perylene as green and ethynyl Nile red as red emitter were conjugated to the 5‐position of 2′‐deoxyuridine via an acetylene bridge. Using phosphoramidite chemistry on solid phase labelled DNA duplexes were prepared that bear single chromophore modifications, and binary and ternary combinations of these chromophore modifications. The steady‐state and time‐resolved fluorescence spectra of all three chromophores were studied in these modified DNA duplexes. An energy‐transfer cascade occurs from ethynyl pyrene over ethynyl perylene to ethynyl Nile red and subsequently an electron‐transfer cascade in the opposite direction (from ethynyl Nile red to ethynyl perylene or ethynyl pyrene, but not from ethynyl perylene to ethynyl pyrene). The electron‐transfer processes finally provide charge separation. The efficiencies by these energy and electron‐transfer processes can be tuned by the distances between the chromophores and the sequences. Most importantly, excitation at any wavelength between 350 and 700 nm finally leads to charge separated states which make these DNA samples promising candidates for light‐harvesting systems. 相似文献
13.
Tao Zhang Xunjin Zhu Wai‐Kwok Wong Hoi‐Lam Tam Wai‐Yeung Wong 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(2):739-748
Based on a donor–acceptor framework, several conjugates have been designed and prepared in which an electron‐donor moiety, ytterbium(III) porphyrinate (YbPor), was linked through an ethynyl bridge to an electron‐acceptor moiety, boron dipyrromethene (BODIPY). Photoluminescence studies demonstrated efficient energy transfer from the BODIPY moiety to the YbPor counterpart. When conjugated with the YbPor moiety, the BODIPY moiety served as an antenna to harvest the lower‐energy visible light, subsequently transferring its energy to the YbPor counterpart, and, consequently, sensitizing the YbIII emission in the near‐infrared (NIR) region with a quantum efficiency of up to 0.73 % and a lifetime of around 40 μs. Moreover, these conjugates exhibited large two‐photon‐absorption cross‐sections that ranged from 1048–2226 GM and strong two‐photon‐induced NIR emission. 相似文献
14.
Chihiro Maeda Pyosang Kim Sung Cho Jong Kang Park Jong Min Lim Dongho Kim Prof. Dr. Josh Vura‐Weis Michael R. Wasielewski Prof. Dr. Hiroshi Shinokubo Prof. Dr. Atsuhiro Osuka Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(17):5052-5061
meso‐Triazolyl‐appended ZnII–porphyrins were readily prepared by CuI‐catalyzed 1,3‐dipolar cycloaddition of benzyl azide to meso‐ethynylated ZnII–porphyrin (click chemistry). In noncoordinating CHCl3 solvent, spontaneous assembly occurred to form tetrameric array ( 3 )2 from meso–meso‐linked diporphyrins 3 , and dodecameric porphyrin squares ( 4 )4 and ( 5 )4 from the L ‐shaped meso–meso‐linked triporphyrins 4 and 5 . The structures of these assemblies were examined by 1H NMR spectra, absorption spectra, and their gel permeation chromatography (GPC) retention time. Furthermore, the structures of the dodecameric porphyrin squares ( 4 )4 and ( 5 )4 were probed by small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) measurements in solution using a synchrotron source. Excitation‐energy migration processes in these assemblies were also investigated in detail by using both steady‐state and time‐resolved spectroscopic methods, which revealed efficient excited‐energy transfer (EET) between the meso–meso‐linked ZnII–porphyrin units that occurred with time constants of 1.5 ps?1 for ( 3 )2 and 8.8 ps?1 for ( 5 )4. 相似文献
15.
The synthesis of a benzenethiol‐derivatized porphyrin for flat‐lying self‐assembly on gold substrates is described. Acetyl protected thiol is not stable enough in Pd‐catalyzed reactions. While acrylate derivatives protected thiol group shows good tolerance in Pd‐catalyzed borylations and Suzuki‐Miyaura coupling reactions and no catalyst poisoning was observed. 相似文献
16.
Cyclic Tetramers of Zinc Chlorophylls as a Coupled Light‐Harvesting Antenna–Charge‐Separation System
Dr. Yoshinao Shinozaki Prof. Kei Ohkubo Prof. Shunichi Fukuzumi Dr. Kosuke Sugawa Prof. Joe Otsuki 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(3):1165-1176
A coupled light‐harvesting antenna–charge‐separation system, consisting of self‐assembled zinc chlorophyll derivatives that incorporate an electron‐accepting unit, is reported. The cyclic tetramers that incorporated an electron acceptor were constructed by the co‐assembly of a pyridine‐appended zinc chlorophyll derivative, ZnPy , and a zinc chlorophyll derivative further decorated with a fullerene unit, ZnPyC60 . Comprehensive steady‐state and time‐resolved spectroscopic studies were conducted for the individual tetramers of ZnPy and ZnPyC60 as well as their co‐tetramers. Intra‐assembly singlet energy transfer was confirmed by singlet–singlet annihilation in the ZnPy tetramer. Electron transfer from the singlet chlorin unit to the fullerene unit was clearly demonstrated by the transient absorption of the fullerene radical anion in the ZnPyC60 tetramer. Finally, with the co‐tetramer, a coupled light‐harvesting and charge‐separation system with practically 100 % quantum efficiency was demonstrated. 相似文献
17.
Christof M. Niemeyer Prof. Dr. 《Angewandte Chemie (International ed. in English)》2010,49(7):1200-1216
Conjugation with artificial nucleic acids allows proteins to be modified with a synthetically accessible, robust tag. This attachment is addressable in a highly specific manner by means of molecular recognition events, such as Watson–Crick hybridization. Such DNA–protein conjugates, with their combined properties, have a broad range of applications, such as in high‐performance biomedical diagnostic assays, fundamental research on molecular recognition, and the synthesis of DNA nanostructures. This Review surveys current approaches to generate DNA–protein conjugates as well as recent advances in their applications. For example, DNA–protein conjugates have been assembled into model systems for the investigation of catalytic cascade reactions and light‐harvesting devices. Such hybrid conjugates are also used for the biofunctionalization of planar surfaces for micro‐ and nanoarrays, and for decorating inorganic nanoparticles to enable applications in sensing, materials science, and catalysis. 相似文献
18.
19.
20.
Christian B. Winiger Dr. Shaoguang Li Dr. Ganesh R. Kumar Dr. Simon M. Langenegger Prof. Dr. Robert Häner 《Angewandte Chemie (International ed. in English)》2014,53(49):13609-13613
The efficient collection of solar energy relies on the design and construction of well‐organized light‐harvesting systems. Herein we report that supramolecular phenanthrene polymers doped with pyrene are effective collectors of light energy. The linear polymers are formed through the assembly of short amphiphilic oligomers in water. Absorption of light by phenanthrene residues is followed by electronic energy transfer along the polymer over long distances (>100 nm) to the accepting pyrene molecules. The high efficiency of the energy transfer, which is documented by large fluorescence quantum yields, suggests a quantum coherent process. 相似文献