首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the efficient synthesis of oligoribonucleotides by the 5′‐O‐(4,4′‐dimethoxytrityl) phosphoramidite approach, the 2′‐O‐[1‐(benzyloxy)ethyl]acetals 56 – 67 were investigated. Studies with the 2′‐O‐[1‐(benzyloxy)ethyl]‐5′‐O‐(dimethoxytrityl)ribonucleoside 3′‐phosphoramidites 56 – 59 gave, however, only reasonable results. The oligoribonucleotides obtained showed some impurities since the acid stabilities of the acetal and dimethoxytrityl functions are too close to guarantee a high selectivity. A combination of new acid‐labile protected 2′‐O‐protecting groups with the 2‐(4‐nitrophenyl)ethyl/[2‐(4‐nitrophenyl)ethoxy]carbonyl (npe/npeoc) strategy for base protection was more successful. The synthesis and physical properties of the monomeric building units and their intermediates 8 – 67 and the conditions for the automated generation of homo‐ and mixed oligoribonucleotides is described. The new 2′‐acetal protecting group could be cleaved off in a two step procedure and was designed for levelling their stability with regard to the attached nucleobase as well. Therefore, we used the 1‐{{3‐fluoro‐4‐{{[2‐(4‐nitrophenyl)ethoxy]carbonyl}oxy}benzyl}oxy}ethyl (fnebe) moiety for the protection of 2′‐OH of uridine, and for that of 2′‐OH of A, C, and G, the 1‐{{4‐{{[2‐(4‐nitrophenyl)ethoxy]carbonyl}oxy}benzyl}oxy}ethyl (nebe) residue. After selective deprotection by β‐elimination induced by a strong organic base like DBU, the remaining activated acetal was hydrolyzed under very mild acidic protic conditions, which reduced 2′‐3′ isomerization and chain cleavage. Also storage, handling, and purification of the chemically and enzymatically sensitive oligomers was simplified by this approach.  相似文献   

2.
The amino functions of the common 2′‐deoxyribo‐ and ribonucleosides were blocked by the (2‐cyanoethoxy)carbonyl group on treatment with 2‐cyanoethyl carbonochloridate ( 5 ) or 1‐[(2‐cyanoethoxy)carbonyl]‐3‐methyl‐1H‐imidazolium chloride ( 6 ) leading to 7 , 18 , 8 , 19 , 9 , and 20 . In 2′‐deoxyguanosine, the amide group was additionally blocked at the O6 position by the 2‐cyanoethyl (→ 27 ) and 2‐(4‐nitrophenyl)ethyl group (→ 31 , 32 ). Comparative kinetic studies regarding the cleavage of the ce/ceoc and npe/npeoc group by β‐elimination revealed valuable information about the ease and sequential deprotection of the various blocking groups at different sites of the nucleobases. Besides the 5′‐O‐(dimethoxytrityl)‐protected 3′‐(2‐cyanoethyl diisopropylphosphoramidites) 38 and 39 of N4‐[(2‐cyanoethoxy)carbonyl]‐2′‐deoxycytidine and N6‐[(2‐cyanoethoxy)carbonyl]‐2′‐deoxyadenosine, respectively, the N2‐[(2‐cyanoethoxy)carbonyl]‐2′‐deoxy‐O6‐[2‐(4‐nitrophenyl)ethyl]guanosine analog 40 is recommended as building block for oligo‐2′‐deoxyribonucleotide synthesis.  相似文献   

3.
The (2‐cyano‐1‐phenylethoxy)carbonyl (2c1peoc) group was developed as a new base‐labile protecting group for the 5′‐OH function in solid‐phase synthesis of oligoribonucleotides via the phosphoramidite approach. The half‐lives of its β‐elimination process by 0.1M DBU (1,8‐diazabicyclo[5.4.0]undec‐7‐ene) were determined to be 7–14 s by HPLC investigations. The 2′‐OH function was protected with the acid‐labile tetrahydro‐4‐methoxy‐2H‐pyran‐4‐yl (thmp) group, while the 2‐(4‐nitrophenyl)ethyl (npe) and 2‐(4‐nitrophenyl)ethoxycarbonyl (npeoc) groups were used for the protection of the base and phosphate moieties. The syntheses of the monomeric building blocks, both phosphoramidites and nucleoside‐functionalized supports, as well as the build‐up of oligoribonucleotides by means of this approach are described.  相似文献   

4.
The syntheses of the 3′‐O‐(4,4′‐dimethoxytrityl)‐protected 5′‐phosphoramidites 25 – 28 and 5′‐(hydrogen succinates) 29 – 32 , which can be used as monomeric building blocks for the inverse (5′‐3′)‐oligodeoxyribonucleotide synthesis are described (Scheme). These activated nucleosides and nucleotides were obtained by two slightly different four‐step syntheses starting with the base‐protected nucleosides 13 – 20 . For the protection of the aglycon residues, the well‐established 2‐(4‐nitrophenyl)ethyl (npe) and [2‐(4‐nitrophenyl)ethoxy]carbonyl (npeoc) groups were used. The assembly of the oligonucleotides required a slightly increased coupling time of 3 min in application of the common protocol (see Table 1). The use of pyridinium hydrochloride as an activator (instead of 1H‐tetrazole) resulted in an extremely shorter activation time of 30 seconds. We established the efficiency of this inverse strategy by the synthesis of the oligonucleotide 3′‐conjugates 33 and 34 which carry lipophilic caps derived from cholesterol and vitamin E, respectively, as well as by the formation of (3′‐3′)‐ and (5′‐5′)‐internucleotide linkages (see Table 2).  相似文献   

5.
The compounds (2′E,2′E)‐2,2′‐(propane‐1,2‐diylidene)bis[1‐(2‐nitrophenyl)hydrazine], C15H14N6O4, (I), and (2Z,3Z)‐ethyl 3‐[2‐(2‐nitrophenyl)hydrazinylidene]‐2‐[2‐(4‐nitrophenyl)hydrazinylidene]butanoate tetrahydrofuran hemisolvate, C18H18N6O6·0.5C4H8O, (II), are puzzling outliers deviating from a general synthetic route aimed at the preparation of substituted pyrazoles. Possible reasons for this outcome, which is exceptional in an otherwise firmly established synthetic procedure, are analyzed. Compound (I) is unsolvated, while compound (II) crystallizes with a tetrahydrofuran solvent molecule lying on an inversion centre. The ethoxycarbonyl chain of (II), in turn, appears disordered into two equally populated (50%) moieties. In both structures, a plethora of different commonly occurring weak intermolecular interactions [viz. π(phenyl)...π(phenyl), π(C=N)...π(C=N), π(phenyl)...π(C=N), N—H...O and C—H...O] appear responsible for the crystal stability. Much less common are the short O(nitro)...O(nitro) contacts which are observed in the structure of (I), an example of unusual `electron donor–acceptor' (EDA) interactions.  相似文献   

6.
Based upon the photolabile [2‐(2‐nitrophenyl)propoxy]carbonyl group (NPPOC), a large number of modified 2‐(2‐nitrophenyl)propanol derivatives substituted at the phenyl ring (see 23 – 34 and 57 – 76 ) as well as at the side‐chain (see 85 – 92 and 95 – 98 ) were synthesized to improve the photoreactivity of this new type of photolabile entity. The phenyl moiety was also exchanged by the naphthalenyl group (see 102, 103, 105, 108, 110, 113 , and 114 ), the thienyl substituent (see 115, 117, 118 , and 120 ), and the benzothienyl substituent (see 121 ). The 2‐(2‐nitroaryl‐ and heteroaryl)propanols were converted with diphosgene into the corresponding carbonochloridates, which reacted subsequently with thymidine to the thymidine 5′‐(protected carbonates) 123 – 178 as the main reaction products. In several cases, the corresponding 3′‐carbonates and 3′,5′‐dicarbonates 179 – 212 were also isolated and characterized. Photolysis studies under standardized conditions (see Table) indicated that the rate of photocleavage varies in a broad range depending on the substituents. So far, the thymidine 5′‐[2‐(5‐halo‐2‐nitrophenyl)propyl carbonates] 127 – 129 , 5′‐[2‐(nitro[1,1′‐biphenyl]3‐yl)propyl carbonates] 136 – 139 , 5′‐{2‐[2‐nitro‐5‐(thianthren‐1‐yl)phenyl]propyl carbonate} ( 140 ), 5′‐[2‐(5‐naphthalenyl‐2‐nitrophenyl)propyl carbonates] 141 and 142 , and 5′‐[2‐(2‐nitro‐5‐thienylphenyl)propyl carbonates] 143 and 144 showed the best properties regarding fast and uniform deprotection. Since the nucleobases of 213 – 215 do not influence the photocleavage features, in general, the new type of photolabile building blocks allows in form of their 3′‐phosphoramidites the photolithographic formation of high‐quality biochips.  相似文献   

7.
The chemical synthesis of isoxanthopterin and 6‐phenylisoxanthopterin N8‐(2′‐deoxy‐β‐D ‐ribofuranosyl nucleosides) is described as well as their conversion into suitably protected 3′‐phosphoramidite building blocks to be used as marker molecules for DNA synthesis. Applying the npe/npeoc (=2‐(4‐nitrophenyl)ethyl/[2‐(4‐nitrophenyl)ethoxy]carbonyl) strategy, we used the new building blocks in the preparation of oligonucleotides by an automated solid‐support approach. The hybridization properties of a series of labelled oligomers were studied by UV‐melting techniques. It was found that the newly synthesized markers only slightly interfered with the abilities of the labelled oligomers to form stable duplexes with complementary oligonucleotides.  相似文献   

8.
The photolabile 3′‐O‐{[2‐(2‐nitrophenyl)propoxy]carbonyl}‐protected 5′‐phosphoramidites ( 16 – 18 ) were synthesized (see Scheme) for an alternative mode of light‐directed production of oligonucleotide arrays. Because of the characteristics of these monomeric building blocks, photolithographic in situ DNA synthesis occurred in 5′→3′ direction, in agreement with the orientation of enzymatic synthesis. Synthesis yields were as good as those of conventional reactions. The resulting oligonucleotides are attached to the surface via their 5′‐termini, while the 3′‐hydroxy groups are available as substrates for enzymatic reactions such as primer extension upon hybridization of a DNA template (see Fig. 2). The production of such oligonucleotide chips adds new procedural avenues to the growing number of applications of DNA microarrays.  相似文献   

9.
The first results of a study aiming at an efficient preparation of a large variety of 2′‐O‐[(triisopropylsilyl)oxy]methyl(= tom)‐protected ribonucleoside phosphoramidite building blocks containing modified nucleobases are reported. All of the here presented nucleosides have already been incorporated into RNA sequences by several other groups, employing 2′‐O‐tbdms‐ or 2′‐O‐tom‐protected phosphoramidite building blocks (tbdms = (tert‐butyl)dimethylsilyl). We now optimized existing reactions, developed some new and shorter synthetic strategies, and sometimes introduced other nucleobase‐protecting groups. The 2′‐O‐tom, 5′‐O‐(dimethoxytrityl)‐protected ribonucleosides N2‐acetylisocytidine 5 , O2‐(diphenylcarbamoyl)‐N6‐isobutyrylisoguanosine 8 , N6‐isobutyryl‐N2‐(methoxyacetyl)purine‐2,6‐diamine ribonucleoside (= N8‐isobutyryl‐2‐[(methoxyacetyl)amino]adenosine) 11 , 5‐methyluridine 13 , and 5,6‐dihydrouridine 15 were prepared by first introducing the nucleobase protecting groups and the dimethoxytrityl group, respectively, followed by the 2′‐O‐tom group (Scheme 1). The other presented 2′‐O‐tom, 5′‐O‐(dimethoxytrityl)‐protected ribonucleosides inosine 17 , 1‐methylinosine 18 , N6‐isopent‐2‐enyladenosine 21 , N6‐methyladenosine 22 , N6,N6‐dimethyladenosine 23 , 1‐methylguanosine 25 , N2‐methylguanosine 27 , N2,N2‐dimethylguanosine 29 , N6‐(chloroacetyl)‐1‐methyladenosine 32 , N6‐{{{(1S,2R)‐2‐{[(tert‐butyl)dimethylsilyl]oxy}‐1‐{[2‐(4‐nitrophenyl)ethoxy]carbonyl}propyl}amino}carbonyl}}adenosine 34 (derived from L ‐threonine) and N4‐acetyl‐5‐methylcytidine 36 were prepared by nucleobase transformation reactions from standard, already 2′‐O‐tom‐protected ribonucleosides (Schemes 2–4). Finally, all these nucleosides were transformed into the corresponding phosphoramidites 37 – 52 (Scheme 5), which are fully compatible with the assembly and deprotection conditions for standard RNA synthesis based on 2′‐O‐tom‐protected monomeric building blocks.  相似文献   

10.
Oligonucleotides incorporating 7‐deaza‐2′‐deoxyxanthosine ( 3 ) and 2′‐deoxyxanthosine ( 1 ) were prepared by solid‐phase synthesis using the phosphoramidites 6 – 9 and 16 which were protected with allyl, diphenylcarbamoyl, or 2‐(4‐nitrophenyl)ethyl groups. Among the various groups, only the 2‐(4‐nitrophenyl)ethyl group was applicable to 7‐deazaxanthine protection being removed with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) by β‐elimination, while the deprotection of the allyl residue with Pd0 catalyst or the diphenylcarbamoyl group with ammonia failed. Contrarily, the allyl group was found to be an excellent protecting group for 2′‐deoxyxanthosine ( 1 ). The base pairing of nucleoside 3 with the four canonical DNA constituents as well as with 3‐bromo‐1‐(2‐deoxy‐β‐D ‐erythro‐pentofuranosyl)‐1H‐pyrazolo[3,4‐d]pyrimidine‐4,6‐diamine ( 4 ) within the 12‐mer duplexes was studied, showing that 7‐deaza‐2′‐deoxyxanthosine ( 3 ) has the same universal base‐pairing properties as 2′‐deoxyxanthosine ( 1 ). Contrary to the latter, it is extremely stable at the N‐glycosylic bond, while compound 1 is easily hydrolyzed under slightly acidic conditions. Due to the pKa values 5.7 ( 1 ) and 6.7 ( 3 ), both compounds form monoanions under neutral conditions (95% for 1 ; 65% for 3 ). Although both compounds form monoanions at pH 7.0, pH‐dependent Tm measurements showed that the base‐pair stability of 7‐deaza‐2′‐deoxyxanthosine ( 3 ) with dT is pH‐independent. This indicates that the 2‐oxo group is not involved in base‐pair formation.  相似文献   

11.
With the aim to develop a general approach to a total synthesis of aminoacylated t‐RNAs and analogues, we describe the synthesis of stabilized, aminoacylated RNA fragments, which, upon ligation, could lead to aminoacylated t‐RNA structures. Novel RNA phosphoramidites with fluoride‐labile 2′‐O‐[(triisopropylsilyl)oxy]methyl (=tom) sugar‐protecting and N‐{{2‐[(triisopropylsilyl)oxy]benzyl}oxy}carbonyl (=tboc) base‐protecting groups were prepared (Schemes 4 and 5), as well as a solid support containing an immobilized N6‐tboc‐protected adenosine with an orthogonal (photolabile) 2′‐O‐[(S)‐1‐(2‐nitrophenyl)ethoxy]methyl (=(S)‐npeom) group (Scheme 6). From these building blocks, a hexameric oligoribonucleotide was prepared by automated synthesis under standard conditions (Scheme 7). After the detachment from the solid support, the resulting fully protected sequence 34 was aminoacylated with L ‐phenylalanine derivatives carrying photolabile N‐protecting groups (→ 42 and 43 ; Scheme 9). Upon removal of the fluoride‐labile sugar‐ and nucleobase‐protecting groups, the still stabilized, partially with the photolabile group protected precursors 44 and 45 , respectively, of an aminoacylated RNA sequence were obtained (Scheme 9 and Fig. 3). Photolysis of 45 under mild conditions resulted in the efficient formation of the 3′(2′)‐O‐aminoacylated RNA sequence 46 (Fig. 4). Additionally, we carried out model investigations concerning the stability of ester bonds of aminoacylated ribonucleotide derivatives under acidic conditions (Table) and established conditions for the purification and handling of 3′(2′)‐O‐aminoacylated RNA sequences and their stabilized precursors.  相似文献   

12.
The Zn complexes bis(acetylacetonato‐κ2O,O′)bis{4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κN1}zinc(II), [Zn(C5H7O2)2(C22H17N3S)2], (I), and {μ‐4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine‐κ2N1:N1′′}bis[bis(acetylacetonato‐κ2O,O′)zinc(II)], [Zn2(C5H7O2)4(C22H17N3S)], (II), are discrete entities with different nuclearities. Compound (I) consists of two centrosymmetrically related monodentate 4′‐[4‐(methylsulfanyl)phenyl]‐4,2′:6′,4′′‐terpyridine (L1) ligands binding to one ZnII atom sitting on an inversion centre and two centrosymmetrically related chelating acetylacetonate (acac) groups which bind via carbonyl O‐atom donors, giving an N2O4 octahedral environment for ZnII. Compound (II), however, consists of a bis‐monodentate L1 ligand bridging two ZnII atoms from two different Zn(acac)2 fragments. Intra‐ and intermolecular interactions are weak, mainly of the C—H...π and π–π types, mediating similar layered structures. In contrast to related structures in the literature, sulfur‐mediated nonbonding interactions in (II) do not seem to have any significant influence on the supramolecular structure.  相似文献   

13.
The low solubility of pterins can drastically be improved by N2‐acylation or formation of the N2‐[(dimethylamino)methylene] derivatives. Both types of compounds can be alkylated under Mitsunobu conditions to form from N2‐acylpterins (see 2 and 3 ) and their derivatives (see 5, 6, 8, 9, 11, 13, 15 , and 17 ) selectively the O4‐alkyl derivatives 22 – 31 , whereas the electron‐donating [(dimethylamino)methyleneamino function in 46 – 51 gives, in a selective reaction, the N(3)‐substitution (→ 52 – 61 ). N2,N2‐Dimethylpterins and 18 and 19 and N2‐methylpterins 20 and 21 direct alkylation also to the O4‐position (→ 32 – 35, 38 and 39 ). Deacylation can be achieved under very mild conditions by solvolysis with MeOH ( 22 → 40, 26 → 41 ), and displacement of the O4‐[2‐(4‐nitrophenyl)ethyl] group proceeds with ammonia at room temperature to the corresponding pteridin‐2,4‐diamines 42 – 45 . Cleavage of the N2‐[(dimethylamino)methylene] group works well with ammonia (→ 62 – 67 ). The advantage of applying the 2‐(4‐nitrophenyl)ethyl (npe) group as blocking group is seen in its selective removal by 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) under aprotic conditions without harming the other substituents.  相似文献   

14.
The challenging molecular architecture of spirooxindoles is appealing to chemists because it evokes novel synthetic strategies that address configurational demands and provides platforms for further reaction development. The [3+2] cycloaddition of the carbonyl ylide with arylideneoxindole via a five‐membered cyclic transition state gave a novel class of dispirooxindole derivatives, namely tert‐butyl 4′‐(4‐bromophenyl)‐1′′‐methyl‐2,2′′‐dioxo‐5′‐phenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐1‐carboxylate, C36H31BrN2O, (Ia), 5′‐(4‐bromophenyl)‐1,1′′‐dimethyl‐4′‐phenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione, C32H25BrN2O3, (Ib), and tert‐butyl 1′′‐methyl‐2,2′′‐dioxo‐4′‐phenyl‐5′‐(p‐tolyl)‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐1‐carboxylate, C37H34N2O5, (Ic). Crystal structure analyses of these dispirooxindoles revealed the formation of two diastereoisomers selectively and confirmed their relative stereochemistry (SSSR and RRRS). In all three structures, intramolecular C—H...O and π–π interactions between oxindole and dihydrofuran rings are the key factors governing the regio‐ and stereoselectivity, and in the absence of conventional hydrogen bonds, their crystal packings are strengthened by intermolecular C—H...π interactions.  相似文献   

15.
The synthesis of various N‐methylated nucleosides (m6A, m3C, m4C, m3U) is described. These minor nucleosides can be obtained by simple methylation with diazomethane of [2‐(4‐nitrophenyl)ethoxy]carbonyl(npeoc)‐protected nucleosides. These methylated compounds are easily further derivatized to fit into the scheme of the [2‐(dansyl)ethoxy]carbonyl (dnseoc) approach for RNA synthesis (dansyl=[5‐(dimethylamino)naphthalen‐1‐yl]sulfonyl). Various oligoribonucleotides containing N6‐methyladenosine were synthesized, underlining the usefulness of the dnseoc approach, especially for the synthesis of natural tRNA‐derived oligoribonucleotide sequences.  相似文献   

16.
Five new di‐ and triglycosides, irigenin 7‐[Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranoside] ( 1 ), 6‐hydroxygenistein 4′‐[Oβ‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranoside] ( 2 ), nigricin 4′‐[Oβ‐D ‐glucopyanosyl‐(1→6)‐β‐D ‐glucopyranoside] ( 3 ), nigricin 4′‐[Oβ‐D ‐glucopyanosyl‐(1→2)‐O‐[α‐L ‐rhamnopyranosyl‐(1→6)]‐β‐D ‐glucopyranoside] ( 4 ), and 7‐{4′‐{[2″‐O‐(4′′′′‐acetyl‐2′′′′‐methoxyphenyl)‐β‐D ‐glucopyranosyl]oxy}‐3′‐(β‐D ‐glucopyranosyloxy)phenyl]‐9‐methoxy‐8H‐1,3‐dioxolo[4,5‐g]‐[1 benzopyran‐8‐one‐] ( 5 ), along with a known compound, nigricin 4′‐(β‐D ‐glucopyranoside) ( 6 ), were isolated from the rhizomes of Iris germanica. The structures of these compounds were established by spectroscopic methods, including 2D NMR spectroscopic techniques.  相似文献   

17.
Synthesis of 2‐(o‐nitrophenyl)‐6‐arylthiazolo[3,2‐b]‐[1,2,4]‐triazoles 4 and its isomer 3‐(o‐nitrophenyl)‐5‐arylthiazolo[2,3‐c]‐[1,2,4]‐triazoles 6 has been achieved starting from the appropriate 1‐(o‐nitrobenzoyl)‐3‐thiosemicarbazide 1 . Compound 1 on condensation with α‐haloketones gives 2‐(o‐nitrobenzoyl)hydrazino‐4‐arylthiazole hydrobromide 5 , which, on cyclization with POCl3, affords thiazolo[3,2‐b]‐[1,2,4]‐triazoles 6 and not the isomeric thiazolo[3,2‐b]‐[1,2,4]‐triazoles 4 . This has been established by an unequivocal synthesis of 4 through polyphosphoric acid cyclization of 5‐aroylmethylmercapto‐3‐o‐nitrophenyl‐[1,2,4]‐triazole 3 . Compound 3 was synthesized by condensation of α‐haloketones with 5‐mercapto‐3‐(o‐nitrophenyl)‐[1,2,4]‐triazole 2 , obtained cyclization of 2‐(o‐nitrobenzoyl)hydrazinecarbothioamide 1 with NaOH. The antibacterial and antifungal activities of some of the compounds have also been evaluated.  相似文献   

18.
Based on the [2‐(2‐nitrophenyl)propoxy]carbonyl (nppoc) group, six new photolabile protecting groups ( 2, 8, 9b, 16b, 25b , and 26 ), each covalently linked to a 9H‐thioxanthen‐9‐one (Tx) unit functioning as an intramolecular triplet sensitizer, were synthesized. Linkers were introduced between the Me group or the aromatic ring of nppoc and the 2‐position of Tx by means of classical organic synthesis combined with Pd catalyzed C? C coupling reactions. The new photolabile protecting groups to be used in light‐directed synthesis of DNA chips were attached to the 5′‐O‐atom of thymidine via a carbonate linkage, giving rise to the caged nucleosides 7, 11, 13, 19, 20 , and 30 .  相似文献   

19.
The (2-dansylethoxy)carbonyl (= {2-{[5-(dimethylamino)naphthalen-l-yl]sulfonyl}ethoxy}carbonyl; dnseoc) group was employed for protection of the amino functions of the aglycone residues. The lactam function of 2′-deoxyguanosine was on the one hand unprotected and on the other hand alkylated at O6 of the aglycone with the 2-(4-nitrophenyl)ethyl (npe) and 2-(phenylsulfonyl)ethyl (pse) group, respectively. The syntheses of monomeric building blocks, both phosphoramidites and nucleoside- functionalized supports, are described for the three common 2′-deoxynucleosides (2′-deoxycytidine, 2′-deoxyadenosine, 2′-deoxyguanosine). As kinetic studies with the tritylated nucleosides showed, the dnseoc group is more labile towards DBU cleavage than the corresponding 2-(4-nitrophenyl)ethyl-(npe) and [2-(4-nitrophenyl)ethoxy]carbonyl(npeoc)-protected analogues (see Table 2). These results were confirmed by the very fast deprotection rate of the dnseoc groups at some oligonucleotides.  相似文献   

20.
Spiro scaffolds are being increasingly utilized in drug discovery due to their inherent three‐dimensionality and structural variations, resulting in new synthetic routes to introduce spiro building blocks into more pharmaceutically active molecules. Multicomponent cascade reactions, involving the in situ generation of carbonyl ylides from α‐diazocarbonyl compounds and aldehydes, and 1,3‐dipolar cycloadditon with 3‐arylideneoxindoles gave a novel class of dispirooxindole derivatives, namely 1,1′′‐dibenzyl‐5′‐(4‐chlorophenyl)‐4′‐phenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione, C44H33ClN2O3, (I), 1′′‐acetyl‐1‐benzyl‐5′‐(4‐chlorophenyl)‐4′‐phenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione, C39H29ClN2O4, (II), 1′′‐acetyl‐1‐benzyl‐4′,5′‐diphenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione, C39H30N2O4, (III), and 1′′‐acetyl‐1‐benzyl‐4′,5′‐diphenyl‐4′,5′‐dihydrodispiro[indoline‐3,2′‐furan‐3′,3′′‐indoline]‐2,2′′‐dione acetonitrile hemisolvate, C39H30N2O4·0.5C2H3N, (IV). All four compounds exist as racemic mixtures of the SSSR and RRRS stereoisomers. In these structures, the two H atoms of the dihydrofuran ring and the two substituted oxindole rings are in a trans orientation, facilitating intramolecular C—H...O and π–π interactions. These weak interactions play a prominent role in the structural stability and aid the highly regio‐ and diastereoselective synthesis. In each of the four structures, the molecular assembly in the crystal is also governed by weak noncovalent interactions. Compound (IV) is the solvated analogue of (III) and the two compounds show similar structural features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号