首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2,3‐Dihydro‐4H‐thiopyrano[2,3‐b]pyridin‐4‐ones 4 were prepared by a three‐step sequence from commercially available 2‐chloropyridine ( 1 ). Thus, successive treatment of 1 with iPr2NLi (LDA) and α,β‐unsaturated aldehydes gave 1‐(2‐chloropyridin‐3‐yl)alk‐2‐en‐1‐ols 2 , which were oxidized with MnO2 to 1‐(2‐chloropyridin‐3‐yl)alk‐2‐en‐1‐ones 3 . The reactions of 3 with NaSH?n H2O proceeded smoothly at 0° in DMF to provide the desired thiopyranopyridinones. Similarly, 2,3‐dihydro‐4H‐thiopyrano[2,3‐c]pyridin‐4‐ones 8 and 2,3‐dihydro‐4H‐thiopyrano[3,2‐c]pyridin‐4‐ones 12 were obtained starting from 3‐chloropyridine ( 5 ) and 4‐chloropyridine ( 9 ), respectively.  相似文献   

2.
In the coordination polymer catena‐poly[[[diaqua[5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ2N3,O4]lead(II)]‐μ‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ3N3,O4:N2] dihydrate], {[Pb(C10H6N3O4)(H2O)2]·2H2O}n, the two 5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylate ligands have different coordination modes, one being terminal and the other bridging. The bridging ligand links PbII cations into one‐dimensional coordination polymer chains. The structure is also stabilized by intra‐ and interchain π–π stacking interactions between the pyridine rings, resulting in the formation of a two‐dimensional network. Extensive hydrogen‐bonding interactions lead to the formation of a three‐dimensional supramolecular network.  相似文献   

3.
The reaction of aryl(3‐isocyanopyridin‐4‐yl)methanones 1 , easily prepared from commercially available pyridin‐3‐amine, with aryl Grignard reagents gave, after aqueous workup, 2,3‐diaryl‐3H‐pyrrolo[2,3‐c]pyridin‐3‐ols 2 . These rather unstable alcohols were O‐acylated with Ac2O in pyridine in the presence of a catalytic amount of 4‐(dimethylamino)pyridine (DMAP) to afford the corresponding 2,3‐diaryl‐3H‐pyrrolo[2,3‐c]pyridin‐3‐yl acetates 3 in relatively good yields.  相似文献   

4.
The complex poly[[aqua(μ2‐phthalato‐κ2O1:O2){μ3‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ4N2,N3:O:O′}{μ2‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ3N2,N3:O}dizinc(II)] dihydrate], {[Zn2(C10H8N3O2)2(C8H4O4)(H2O)]·2H2O}n, has been prepared by solvothermal reaction of 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetonitrile (PPAN) with zinc(II). Under hydrothermal conditions, PPAN is hydrolyzed to 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetate (PPAA). The structure determination reveals that the complex is a one‐dimensional double chain containing cationic [Zn4(PPAA)4]4+ structural units, which are further extended by bridging phthalate ligands. The one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via hydrogen‐bonding and π–π stacking interactions.  相似文献   

5.
A new and convenient method for the preparation of 2‐aryl‐2,3‐dihydro‐1,8‐naphthyridin‐4(1H)‐ones 4 has been developed. Thus, N‐{3‐[(2E)‐3‐arylprop‐2‐enoyl]pyridin‐2‐yl}‐2,2‐dimethylpropanamides 3 are synthesized from commercially available pyridin‐2‐amine using an easily performed three‐step sequence and are subjected to cyclization with deprotection under acidic conditions in H2O to give the desired products. Similarly, 2‐aryl‐2,3‐dihydro‐1,7‐naphthyridin‐4(1H)‐ones 8 and 2‐aryl‐2,3‐dihydro‐1,6‐naphthyridin‐4(1H)‐ones 12 can be prepared from pyridin‐3‐amine and pyridin‐4‐amine, respectively.  相似文献   

6.
Three new one‐ (1D) and two‐dimensional (2D) CuII coordination polymers, namely poly[[bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐3‐ylmethyl)sulfanyl]‐1,2,4‐triazole}copper(II)] bis(methanesulfonate) tetrahydrate], {[Cu(C13H12N5S)2](CH3SO3)2·4H2O}n ( 1 ), catena‐poly[[copper(II)‐bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole}] dinitrate methanol disolvate], {[Cu(C13H12N5S)2](NO3)2·2CH3OH}n ( 2 ), and catena‐poly[[copper(II)‐bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole}] bis(perchlorate) monohydrate], {[Cu(C13H12N5S)2](ClO4)2·H2O}n ( 3 ), were obtained from 4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐3‐ylmethyl)sulfanyl]‐1,2,4‐triazole with pyridin‐3‐yl terminal groups and from 4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole with pyridin‐4‐yl terminal groups. Compound 1 displays a 2D net‐like structure. The 2D layers are further linked through hydrogen bonds between methanesulfonate anions and amino groups on the framework and guest H2O molecules in the lattice to form a three‐dimensional (3D) structure. Compound 2 and 3 exhibit 1D chain structures, in which the complicated hydrogen‐bonding interactions play an important role in the formation of the 3D network. These experimental results indicate that the coordination orientation of the heteroatoms on the ligands has a great influence on the polymeric structures. Moreover, the selection of different counter‐anions, together with the inclusion of different guest solvent molecules, would also have a great effect on the hydrogen‐bonding systems in the crystal structures.  相似文献   

7.
A series of novel complexes of the type Cu(II)(Ln)2(H2O)2]xH2O [where Ln = L 1–4 , these ligands being described as: L 1 , 2‐({4‐[6,7‐dihydrothieno[3,2‐c]pyridin‐5(4H)‐ylsulfonyl]phenylimino}methyl)phenol, x = 1; L 2 , 2‐({4‐[6,7‐dihydrothieno[3,2‐c] pyridin‐5(4H)‐ylsulfonyl]phenylimino}methyl)‐5‐(methoxy)phenol, x = 2; L 3 , 5‐chloro‐2‐({4‐[6,7‐dihydrothieno[3,2‐c]pyridin‐5(4H)‐ylsulfonyl]phenylimino}methyl)phenol, x = 2; and L 4 , 5‐bromo‐4‐chloro‐2‐({4‐[6,7‐dihydrothieno[3,2‐c]pyridin‐5(4H)‐ylsulfonyl]phenylimino} methyl)phenol, x = 1] was investigated. They were characterized by elemental analysis, IR, 1H‐NMR, 13C‐NMR and electronic spectra, magnetic measurements and thermal studies. The FAB‐mass spectrum of [Cu(II)( L 1 )2(H2O)2]H2O was determined. A magnetic moment and reflectance spectral study revealed that an octahedral geometry could be assigned to all the prepared complexes. Ligands (Ln) and their metal complexes were screened for their in vitro antibacterial activity against Bacillus subtillis, Pseudomonas aeruginosa, Escherichia coli and Serratia marcescens bacterial strains. Kinetic parameters such as order of reaction (n), the energy of activation (Ea), the pre‐exponential factor (A), the activation entropy (ΔS), the activation enthalpy (ΔH) and the free energy of activation (ΔG) are reported. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A series of Zn (II), Pd (II) and Cd (II) complexes, [(L) n MX 2 ] m (L = L‐a–L‐c; M = Zn, Pd; X = Cl; M = Cd; X = Br; n, m = 1 or 2), containing 4‐methoxy‐N‐(pyridin‐2‐ylmethylene) aniline ( L‐a ), 4‐methoxy‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐b ) and 4‐methoxy‐N‐methyl‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐c ) have been synthesized and characterized. The X‐ray crystal structures of Pd (II) complexes [L 1 PdCl 2 ] (L = L‐b and L‐c) revealed distorted square planar geometries obtained via coordinative interaction of the nitrogen atoms of pyridine and amine moieties and two chloro ligands. The geometry around Zn (II) center in [(L‐a)ZnCl 2 ] and [(L‐c)ZnCl 2 ] can be best described as distorted tetrahedral, whereas [(L‐b) 2 ZnCl 2 ] and [(L‐b) 2 CdBr 2 ] achieved 6‐coordinated octahedral geometries around Zn and Cd centers through 2‐equivalent ligands, respectively. In addition, a dimeric [(L‐c)Cd(μ ‐ Br)Br] 2 complex exhibited typical 5‐coordinated trigonal bipyramidal geometry around Cd center. The polymerization of methyl methacrylate in the presence of modified methylaluminoxane was evaluated by all the synthesized complexes at 60°C. Among these complexes, [(L‐b)PdCl 2 ] showed the highest catalytic activity [3.80 × 104 g poly (methyl methacrylate) (PMMA)/mol Pd hr?1], yielding high molecular weight (9.12 × 105 g mol?1) PMMA. Syndio‐enriched PMMA (characterized using 1H‐NMR spectroscopy) of about 0.68 was obtained with Tg in the range 120–128°C. Unlike imine and amine moieties, the introduction of N‐methyl moiety has an adverse effect on the catalytic activity, but the syndiotacticity remained unaffected.  相似文献   

9.
With the rapid development of modern industry, water pollution has become an intractable environmental issue facing humans worldwide. In particular, the organic dyes discharged into natural water from dyestuffs, dyeing and the textile industry are the main sources of pollution in wastewater. To eliminate these types of pollutants, degradation of organic contaminants through a photocatalytic technique is an effective methodology. To exploit more crystalline photocatalysts for the degradation of organic dyes, two coordination polymers, namely catena‐poly[[(3,5‐dicarboxybenzene‐1‐carboxylato‐κO 1)silver(I)]‐μ‐trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene‐κ2N :N ′], [Ag(C9H5O6)(C12H10N2)]n or [Ag(H2BTC)(3,4′‐bpe)]n , (I), and poly[[(μ3‐5‐carboxybenzene‐1,3‐dicarboxylato‐κ4O 1,O 1′:O 3:O 3)[μ‐trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene‐κ2N :N′ ]cadmium(II)] monohydrate], {[Cd(C9H4O6)(C12H10N2)]·H2O}n or {[Cd(HBTC)(3,4′‐bpe)]·H2O}n , (II), have been prepared by the hydrothermal reactions of benzene‐1,3,5‐tricarboxylic acid (H3BTC) and trans‐1‐(pyridin‐3‐yl)‐2‐(pyridin‐4‐yl)ethene (3,4′‐bpe) in the presence of AgNO3 or Cd(NO3)2·4H2O, respectively. These two title compounds have been structurally characterized by IR spectroscopy, elemental analysis, single‐crystal X‐ray diffraction and powder X‐ray diffraction. In (I), the AgI ions and organic ligands form a one‐dimensional coordination chain, and adjacent coordination chains are connected by Ag…O interactions to give rise to a two‐dimensional supramolecular network. Each two‐dimensional network is entangled with other equivalent networks to generate an infrequent interlocked 2D→3D (2D and 3D are two‐ and three‐dimensional, respectively) supramolecular framework. In (II), the CdII ions are bridged by the HBTC2− and 3,4′‐bpe ligands, which lie across centres of inversion, to give a two‐dimensional coordination network. The thermal stabilities and photocatalytic properties of the title compounds have also been studied.  相似文献   

10.
Synthesis and characterization of three nickel complexes [NiCl(L1)] 1 , [NiCl(L2)] 2 and [NiCl(L3)] 3 are described {HL1 = 4‐(2,5‐dimethoxyphenyl)‐1‐((pyridin‐2‐yl)methylene)thiosemicarbazide, HL2 = 4‐(3‐nitrophenyl)‐1‐((pyridin‐2‐yl)methylene)thiosemicarbazide and HL3 = 4‐(2,4‐dimethoxyphenyl)‐1‐((pyridin‐2‐yl)methylene)thiosemicarbazide} and among the tridentate ligands HL3 is reported for the first time. The structures of the complexes were assigned based on CHNS microanalysis, spectroscopic (IR & UV–Vis.) data and solution conductivity studies. The absence of any magnetism for the complexes proved their square planar geometry. Single crystals of complex 1 were grown and analyzed by XRD analysis which confirmed the complex planarity as each Ni atom connects to three (two nitrogen and one sulfur) atoms from the thiosemicarbazone ligand and an additional chlorine atom. Packing of the complex 1 in the crystal lattice was proved to stabilize via intermolecular hydrogen bonds. Antimicrobial activities of 1 – 3 were studied in vitro against fungal and bacterial species and, in several instances, the complexes possessed improved antibacterial behavior in comparison to chloramphenicol.  相似文献   

11.
Molecular ruthenium‐based water oxidation catalyst precursors of general formula [Ru(tda)(Li)2] (tda2? is [2,2′:6′,2′′‐terpyridine]‐6,6′′‐dicarboxylato; L1=4‐(pyren‐1‐yl)‐N‐(pyridin‐4‐ylmethyl)butanamide, 1 b ; L2=4‐(pyren‐1‐yl)pyridine), 1 c ), have been prepared and thoroughly characterized. Both complexes contain a pyrene group allowing ready and efficiently anchoring via π interactions on multi‐walled carbon nanotubes (MWCNT). These hybrid solid state materials are exceptionally stable molecular water‐oxidation anodes capable of carrying out more than a million turnover numbers (TNs) at pH 7 with an Eapp=1.45 V vs. NHE without any sign of degradation. XAS spectroscopy analysis before, during, and after catalysis together with electrochemical techniques allow their unprecedented oxidative ruggedness to be monitored and verified.  相似文献   

12.
A convenient three‐step procedure for the synthesis of three types of 3‐aryl‐2‐sulfanylthienopyridines 4, 8 , and 12 has been developed. The first step of the synthesis of thieno[2,3‐b]pyridine derivatives 4 is the replacement of the halo with a (sulfanylmethyl)sulfanyl group in aryl(2‐halopyridin‐3‐yl)methanones 1 by successive treatment with Na2S?9 H2O and chloromethyl sulfides to give aryl{2‐[(sulfanylmethyl)sulfanyl]pyridin‐3‐yl}methanones 2 . In the second step, these were treated with LDA (LiNiPr2) to give 3‐aryl‐2,3‐dihydro‐2‐sulfanylthieno[2,3‐b]pyridin‐3‐ols 3 , which were dehydrated in the last step with SOCl2 in the presence of pyridine to give the desired products. Similarly, thieno[2,3‐c]pyridine and thieno[3,2‐c]pyridine derivatives, 8 and 12 , respectively, can be prepared from aryl(3‐chloropyridin‐4‐yl)methanones 5 and aryl(4‐chloropyridin‐3‐yl)methanones 9 , respectively.  相似文献   

13.
1‐Pyridin‐3‐yl‐3‐(2‐thienyl of 2‐furyl)prop‐2‐en‐1‐ones 1a , 1b reacted with 2‐cyanoethanethioamide 2 to afford the corresponding 4‐(thiophen‐2‐yl or furan‐2‐yl)‐6‐sulfanyl‐2,3′‐bipyridine‐5‐carbonitriles 3a , 3b . The synthetic potentiality of compounds 3a , 3b were investigated in the present study via their reactions with several active halogen containing compounds 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4h , 5 , 5a , 5b . Our aim here is the synthesis of 4‐(2‐thienyl or 2‐furyl)‐6‐pyridin‐3‐ylthieno[2,3‐b]pyridin‐3‐amines 6a , 6b , 6c , 6d , 6e , 6g , 6h , 6i , 6j , 6k , 6l , 6m , 6n ,via 6‐(alkyl‐thio)‐4‐(2‐thienyl or 2‐furyl)‐2,3′‐bipyridine‐5‐carbonitriles 5a , 5b , 5c , 5d , 5e , 5i , 5j , 5k , 5l , 5m . The structures of all newly synthesized heterocyclic compounds were elucidated by considering the data of IR, 1H‐NMR, mass spectra, as well as that of elemental analyses. Anti‐cancer, anti‐Alzheimer, and anti‐COX‐2 activities were investigated for all the newly synthesized heterocyclic compounds.  相似文献   

14.
The bromo‐substituted aromatic dicarboxylic acid 5‐amino‐2,4,6‐tribromoisophthalic acid (H2ATBIP) was used to assemble with CdII ions in the presence of the N‐donor flexible bipyridyl ligands 3,3′‐(diazene‐1,2‐diyl)dipyridine (mzpy) and 1,3‐bis(pyridin‐3‐ylmethyl)urea (3bpmu), leading to the formation of two chain coordination polymers by adopting solution methods, namely, catena‐poly[[[triaqua(5‐amino‐2,4,6‐tribromoisophthalato‐κO)cadmium(II)]‐μ‐3,3′‐(diazene‐1,2‐diyl)dipyridine‐κ2N1:N1′] dihydrate], {[Cd(C8H2Br3NO4)(C10H8N4)(H2O)3]·2H2O}n or {[Cd(ATBIP)(mzpy)(H2O)3]·2H2O}n, ( 1 ), and catena‐poly[[[tetraaquacadmium(II)]‐μ‐1,3‐bis(pyridin‐3‐ylmethyl)urea‐κ2N1:N1′‐[diaquabis(5‐amino‐2,4,6‐tribromoisophthalato‐κO)cadmium(II)]‐μ‐1,3‐bis(pyridin‐3‐ylmethyl)urea‐κ2N1:N1′] octahydrate], {[Cd(C8H2Br3NO4)(C12H12N4O)(H2O)3]·4H2O}n or {[Cd(ATBIP)(3bpmu)(H2O)3]·4H2O}n, ( 2 ). Both complexes were characterized by FT–IR spectroscopic analysis, thermogravimetric analysis (TGA), solid‐state diffuse reflectance UV–Vis spectroscopic analysis, and single‐crystal and powder X‐ray diffraction analysis (PXRD). The mzpy and 3bpmu ligands bridge the CdII metal centres in ( 1 ) and ( 2 ) into one‐dimensional chains, and the ATBIP2− ligands show a monodentate coordination to the CdII centres in both coordination polymers. A discrete water tetramer exists in ( 1 ). Within the chains of ( 1 ) and ( 2 ), there are halogen bonds between adjacent ATBIP2− and mzpy or 3bpmu ligands, as well as hydrogen bonds between the ATBIP2− ligands and the coordinated water molecules. With the aid of weak interactions, the structures of ( 1 ) and ( 2 ) are further extended into three‐dimensional supramolecular networks. An analysis of the solid‐state diffuse reflectance UV–Vis spectra of ( 1 ) and ( 2 ) indicates that a wide indirect band gap exists in both complexes. Complexes ( 1 ) and ( 2 ) exhibit irreversible and reversible dehydration–rehydration behaviours, respectively, and the solid‐state fluorescence properties of both complexes have been studied.  相似文献   

15.
Schiff base complexes of Cu(II), Ni(II), Cd(II), and Zn(II) with 3‐(2‐(2‐oxo‐2H ‐chromene‐3‐carbonyl)hydrazono)‐N ‐(pyridin‐2‐yl)butanamide (H2L) were produced. The synthesized compounds were deduced by elemental analysis, molar conductance, magnetic susceptibility, and spectroscopic techniques. The geometry of the prepared complexes was estimated by applying DFT method. Also, Cu(II) and Zn(II) were separated using a simple, quick, and low‐cost quantitative flotation technique preceding to their determinations using atomic absorption spectrophotometric (AAS). Additionally, the biological activities (antimicrobial, antioxidant, and cytotoxic) of isolated compounds were carried out.  相似文献   

16.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

17.
Much attention has been paid by chemists to the construction of supramolecular coordination compounds based on the multifunctional ligand 5‐sulfosalicylic acid (H3SSA) due to the structural and biological interest of these compounds. However, no coordination compounds have been reported for the multifunctional amino‐substituted sulfobenzoate ligand 2‐amino‐5‐sulfobenzoic acid (H2asba). We expected that H2asba could be a suitable building block for the assembly of supramolecular networks due to its interesting structural characteristics. The reaction of cadmium(II) nitrate with H2asba in the presence of the auxiliary flexible dipyridylamide ligand N,N′‐bis[(pyridin‐4‐yl)methyl]oxamide (4bpme) under ambient conditions formed a new mixed‐ligand coordination compound, namely bis(3‐amino‐4‐carboxybenzenesulfonato‐κO1)diaquabis{N,N′‐bis[(pyridin‐4‐yl)methyl]oxamide‐κN}cadmium(II)–N,N′‐bis[(pyridin‐4‐yl)methyl]oxamide–water (1/1/4), [Cd(C7H6NO5S)2(C14H14N4O2)2(H2O)2]·C14H14N4O2·4H2O, (1), which was characterized by single‐crystal and powder X‐ray diffraction analysis (PXRD), FT–IR spectroscopy, thermogravimetric analysis (TG), and UV–Vis and photoluminescence spectroscopic analyses in the solid state. The central CdII atom in (1) occupies a special position on a centre of inversion and exhibits a slightly distorted octahedral geometry, being coordinated by two N atoms from two monodentate 4bpme ligands, four O atoms from two monodentate 4‐amino‐3‐carboxybenzenesulfonate (Hasba) ligands and two coordinated water molecules. Interestingly, complex (1) further extends into a threefold polycatenated 0D→2D (0D is zero‐dimensional and 2D is two‐dimensional) interpenetrated supramolecular two‐dimensional (4,4) layer through intermolecular hydrogen bonding. The interlayer hydrogen bonding further links adjacent threefold polycatenated two‐dimensional layers into a three‐dimensional network. The optical properties of complex (1) indicate that it may be used as a potential indirect band gap semiconductor material. Complex (1) exhibits an irreversible dehydration–rehydration behaviour. The fluorescence properties have also been investigated in the solid state at room temperature.  相似文献   

18.
Heterosubstituted chalcones and oxopyrimidines were synthesized by the reaction of 2‐(4‐Chlorophenyl)imidazo[1,2‐a]pyridine‐3‐carbaldehyde 1 and different aryl acetophenone in the presence of catalytic amount of 40% alkali to give (2E)‐3‐(2‐(4‐chlorophenyl)imidazo[1,2‐a]pyridin‐3‐yl)‐1‐arylprop‐2‐en‐1‐ones 2a – l . Compounds 2a – l on reaction with urea in the presence of basic catalyst such as KOH to give 6‐(2‐(4‐chlorophenyl)imidazo[1,2‐a]pyridin‐3‐yl)‐4‐aryl pyrimidin‐2(1H)‐ones 3a – l . Their IR, 1H‐NMR, MASS spectral data, and elemental analysis were in accord with assigned structure. All the newly synthesized compounds were screened for their antimicrobial activity. J. Heterocyclic Chem., (2012).  相似文献   

19.
The bromo‐substituted aromatic dicarboxylic acid 5‐amino‐2,4,6‐tribromoisophthalic acid (H2ATBIP), in the presence of the N‐donor flexible bipyridyl‐type ligands 1,3‐bis(pyridin‐4‐yl)propane (bpp) and N,N′‐bis(pyridin‐4‐ylmethyl)oxalamide (4‐bpme) and ZnII ions, was used as an O‐donor ligand to assemble two novel luminescent metal–organic frameworks (MOFs), namely poly[[(μ‐5‐amino‐2,4,6‐tribromoisophthalato‐κ2O1:O3)[μ‐1,3‐bis(pyridin‐4‐yl)propane‐κ2N:N′]zinc(II)] dimethylformamide monosolvate], {[Zn(C8H2Br3NO4)(C13H14N2)]·C3H7NO}n, ( 1 ), and poly[[(μ‐5‐amino‐2,4,6‐tribromoisophthalato‐κ2O1:O3)diaqua[μ‐N,N′‐bis(pyridin‐4‐ylmethyl)oxalamide‐κ2N:N′]zinc(II)] monohydrate], {[Zn(C8H2Br3NO4)(C14H14N4O2)(H2O)2]·H2O}n, ( 2 ), using the solution evaporation method. Both ( 1 ) and ( 2 ) were characterized by FT–IR spectroscopy, elemental analysis (EA), solid‐state diffuse‐reflectance UV–Vis spectroscopy, and powder and single‐crystal X‐ray diffraction analysis. Complex ( 1 ) shows a two‐dimensional (2D) corrugated layer simplified as a 2D (4,4) topological network. The supramolecular interactions (π–π stacking, hydrogen bonding and C—Br…Br halogen bonding) play significant roles in the formation of an extended three‐dimensional (3D) supramolecular network of ( 1 ). Complex ( 2 ) crystallizes in the chiral space group P212121 and exhibits a novel 3D homochiral framework, showing a diamond‐like topology with Schläfli symbol 66. The homochirality of ( 2 ) is further confirmed by the solid‐state circular dichroism (CD) spectrum. The second harmonic generation (SHG) property of ( 2 ) was also investigated. The hydrogen and C—Br…Br/O halogen bonding further stabilize the framework of ( 2 ). The central ZnII ions in ( 1 ) and ( 2 ) show tetrahedral and octahedral coordination geometries, respectively. The coordinated and uncoordinated water molecules in ( 2 ) could be removed selectively upon heating. Most importantly, ( 1 ) and ( 2 ) show rapid and highly sensitive sensing for a large pool of nitroaromatic explosives (NAEs).  相似文献   

20.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号