首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samarium and nitrogen co‐doped Bi2WO6 nanosheets were successfully synthesized by using a hydrothermal method. The crystal structures, morphology, elemental compositions, and optical properties of the prepared samples were investigated. The incorporation of samarium and nitrogen ions into Bi2WO6 was proved by X‐ray diffraction, energy dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy. UV/Vis diffuse reflectance spectroscopy indicated that the samarium and nitrogen co‐doped Bi2WO6 possessed strong visible‐light absorption. Remarkably, the samarium and nitrogen co‐doped Bi2WO6 exhibited higher photocatalytic activity than single‐doped and pure Bi2WO6 under visible‐light irradiation. Radical trapping experiments indicated that holes (h+) and superoxide radicals ( . O2?) were the main active species. The results of photoluminescence spectroscopy and photocurrent measurements demonstrated that the recombination rate of the photogenerated electrons and holes pairs was greatly depressed. The enhanced activity was attributed to the synergistic effect of the in‐built Sm3+/Sm2+ redox pair centers and the N‐doped level. The mechanism of the excellent photocatalytic activity of Sm‐N‐Bi2WO6 is also discussed.  相似文献   

2.
In this study, the characterization and photocatalytic activity of Bi2WO6/Bi2O3 under visible‐light irradiation was investigated in detail. The results suggested that Bi2WO6/Bi2O3 can be synthesized by a facile one‐pot hydrothermal route using a super big 200 mL Teflon‐lined autoclave with optimal sodium oleate/Bi molar ratio of 1.25. Through the characterization of Bi2WO6/Bi2O3 by X‐ray diffraction, scanning electron microscopy, X‐ray photoelectron spectroscopy, Fourier transform infrared, UV‐vis diffuse reflectance spectra and Photoluminescence spectra, it was found that the as‐prepared composite possessed smaller crystallite size and higher visible‐light responsive than the pure Bi2WO6. Moreover, it was expected that the as‐prepared composites exhibited enhanced photocatalytic activity for the degradation of Rhodamine B under visible‐light irradiation, which could be ascribed to their improved light absorption property and the reduced recombination of the photogenerated electrons and holes during the photocatalytic reaction. In general, this study could provide a principle method to synthesize Bi2WO6/Bi2O3 with enhanced photocatalytic activity by one‐step hydrothermal synthesis route for environmental purification.  相似文献   

3.
One‐dimensional (1D) CeO2/Bi2WO6 heterostructured nanofibers with a diameter of about 300 nm were successfully synthesized by using a straightforward strategy combining an electrospinning technique with a sintering process. The acquired products were characterized by thermogravimetric and differential scanning calorimetric (TG‐DSC), Fourier transform infrared (FT‐IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET) surface area measurements, and UV/Vis spectroscopy. The obtained CeO2/Bi2WO6 heterostructured nanofibers exhibited an excellent photocatalytic property for the degradation of Rhodamine B (RhB) dye driven by visible light due to the promoted separation of photoelectrons and holes and the large contact area between the photocatalyst and organic pollutant.  相似文献   

4.
Nowadays, the development of metal-metal sulfide interface semiconductors using green approach is best material for the photocatalytic and biological applications. Here, we provided for the first time, an environmentally friendly route to fabricate bovine serum albumin (BSA) assisted Ag@Bi2S3 composites through a metal-metal sulphide interface via a simple hydrothermal method for the evaluation of photochemical and biological applications. The synthesized composites were characterized by UV–vis DRS, PL, XRD, TEM, and N2 adsorption-desorption isotherms. The UV–vis DRS and PL spectra show that the obtained nano-sized Ag@Bi2S3 composite displays enhanced visible-light absorption and a decreased fluorescence emission compared to that of Bi2S3 nanorods (NRs). The photocatalytic performances of the synthesized composites were evaluated by the degradation of the single (RhB and MB) and mixed dye (RhB+MB) under sunlight irradiation. The results indicated that the Ag@Bi2S3 composite exhibits superior photocatalytic activity (98.38%) than that of individual Ag NPs and Bi2S3 NRs due to the synergistic effect of Ag and Bi2S3 nanophases in the Ag@Bi2S3 composite, which results in an effective charge separation, fast electron transfer from Ag to Bi2S3, and a low recombination of photo-induced electron-hole pairs. The Ag@Bi2S3 composite also has good recycling stability up to 5 cycles and its mechanism also investigated. The evaluation of reactive species during the photocatalytic reaction was also carried out. Further, the effects of Bi2S3 and Ag NPs on the antimicrobial and antioxidant activity of the resultant Ag@Bi2S3 composite were also systematically investigated.  相似文献   

5.
Novel Bi2WO6‐coupled Fe3O4 magnetic photocatalysts with excellent and stable photocatalytic activity for degrading tetracycline hydrochloride and RhB were successfully synthesized via a facile solvothermal route. Through the characterization of the as‐prepared magnetic photocatalysts by X‐ray diffractometry, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy, UV–Vis diffuse reflectance spectra, it was found that the as‐prepared magnetic photocatalysts were synthesized by the coupling of Bi2WO6 and Fe3O4, and introduction of appropriated Fe3O4 can improve nanospheres morphology and visible‐light response. Among them, BFe2 (0.16% Fe3O4) exhibited the best photocatalytic activity for degradation of tetracycline hydrochloride (TCH), reaching 81.53% after 90 min. Meanwhile, the as‐prepared magnetic photocatalysts showed great separation and recycle property. Moreover, the results of electrochemical impedance spectroscopy demonstrated that the well conductivity of Fe3O4 can promote photogenerated charge carriers transfer and inhibit recombination of electron–hole pairs, so that Bi2WO6/Fe3O4 exhibited enhanced photocatalytic activity on degradation of TCH and RhB. Hence, this work provides a principle method to synthesize Bi2WO6/Fe3O4 with excellent photocatalytic performance for actual application, in addition, it showed that introduction of Fe3O4 not only can provide magnetism, but also can enhance photocatalytic activity of Bi2WO6/Fe3O4 magnetic photocatalysts.  相似文献   

6.
CeO2/Bi2WO6 heterostructured microsphere with excellent and stable photocatalytic activity for degradation tetracyclines was successfully synthesized via a facile solvothermal route. The photocatalytic experiments indicated that CeO2/Bi2WO6 heterostructured microspheres exhibited enhanced photocatalytic activity compared to pure Bi2WO6 in both the degradation of tetracycline hydrochloride (TCH) and rhodamine B (RhB) under visible‐light irradiation. The 1CeO2/2Bi2WO6 exhibited the best photocatalytic activity for degradation of TCH, reaching 91% after 60 min reaction. The results suggested that the particular morphological conformation of the microspheres resulted in smaller size and more uniform morphology so as to increase the specific surface area. Meanwhile, the heterojunction was formed by coupling CeO2 and Bi2WO6 in the as‐prepared microspheres, so that the separation efficiency of photogenerated electrons and holes was dramatically improved and the lifetimes of charge carriers were prolonged. Hence, introduction of CeO2 could significantly enhance the photocatalytic activity of CeO2/Bi2WO6 heterostructured microspheres and facilitate the degradation of TCH. This work provided not only a principle method to synthesize CeO2/Bi2WO6 with the excellent photocatalytic performance for actual produce, but also a excellent property of the photocatalyst for potential application in photocatalytic treatment of tetracyclines wastewater from pharmaceutical factory.  相似文献   

7.
The reduced graphene oxide‐Bi2WO6 (rGO‐BWO) photocatalysts with the different RF/O values (molar ratio of the F molar mass and the O's molar mass of Bi2WO6) had been successfully synthesized via one‐step hydrothermal method. The F‐doped rGO‐BWO samples were characterized by X‐ray diffraction patterns (XRD), field‐emission scanning electron microscopy (FE‐ESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller surface area (BET), X‐ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectra (DRS). The results indicate that F? ions had been successfully doped into rGO‐BWO samples. With the increasing of the RF/O values from 0 to 2%, the evident change of the morphology and the absorption edges of F‐doped rGO‐BWO samples and the photocatalytic activities had been enhanced. Moreover, the photocatalytic activity of F‐doped rGO‐BWO with RF/O = 0.05 were better than rGO‐BWO and the other F‐doped rGO‐BWO under 500 W Xe lamp light irradiation. The enhanced photocatalytic activity can be attributed to the morphology of the intact microsphere that signify the bigger specific surface area for providing more possible reaction sites for the adsorption–desorption equilibrium of photocatalytic reaction, the introduction of F? ions that may cause the enhancement of surface acidity and creation of oxygen vacancies under visible light irradiation, the narrower band gap which means needing less energy for the electron hole pair transition.  相似文献   

8.
Uniform Bi2WO6 spheres with high visible light activity were prepared via a solvothermal route. A variety of techniques including transmission electron micrographs (TEM), X-ray powder diffraction (XRD), N2 adsorption, FT-IR spectra, and UV–Vis spectra were employed to characterize the structure of the Bi2WO6 materials so obtained. The results show that the sphere-like Bi2WO6 samples were successfully prepared. And, under the photocatalytic degradation of Rhodamine B, the samples demonstrated high activity, three times higher than that of a sample from the solid-state method. Moreover, the uniform structure made the sample easy to separate from the reaction solution, providing an intrinsic advantage to the normal Bi2WO6 samples.  相似文献   

9.
In this work, we report a novel AgBi(WO4)2–Bi2WO6 heterostructure, which was designed and synthesized by using a simple hydrothermal method. Methyl orange was used as a representative dye indicator to evaluate the visible‐light catalytic activity and the catalytic mechanism was investigated. The as‐synthesized AgBi(WO4)2–Bi2WO6 composite displayed a 43 times higher photocatalytic activity than Bi2WO6. Owing to the matched band gap and distinctive heterostructure, AgBi(WO4)2–Bi2WO6 reveals a high visible‐light response and high‐efficiency utilization of both photogenerated electrons and holes. AgBi(WO4)2 reveals a similar energy level to and good lattice match with Bi2WO6, which are favorable qualities for band bending and fluent electron transfer. Furthermore, the photoexcited electrons can produce oxygen to generate .O2? radicals, which is vital for the overall utilization of both holes and electrons. This is the first example of AgBi(WO4)2 being used as photocatalytic material.  相似文献   

10.
以TiO2纳米管为模板,采用多组分自组装结合水热法制备Bi2WO6/TiO2纳米管异质结构复合材料。通过多种技术如X射线衍射(XRD),X射线光电子能谱(XPS),N2吸附-脱附,扫描电镜(SEM),高分辨透射电镜(HRTEM)和紫外可见漫反射吸收光谱(UV-Vis DRS)考察所制备样品的组成、结构、形貌、光吸收和电子性质。Bi2WO6纳米片或纳米粒子分布在TiO2纳米管上,形成异质结构。随后,通过在紫外、可见和微波辅助光催化模式下降解染料罗丹明B(RhB)来评价复合催化剂的光催化活性。与TiO2纳米管和Bi2WO6相比,Bi2WO6/TiO2-35纳米管在多模式下表现出更优异的光催化活性。与紫外和可见降解模式相比,Bi2WO6/TiO2-35纳米管在微波辅助光催化模式下对RhB的降解效率最高。这种增强的光催化活性源于适量Bi2WO6的引入、纳米管独特的形貌特征和降解模式所引起的增强的量子效率。降解过程中的活性物种被证明是h+,·OH和·O2-自由基。而且,在微波辅助光催化模式下,可产生更多的·OH和·O2-自由基。  相似文献   

11.
{[Bi(BTC)(H2O)2] · H2O}n (H3BTC = 1,3,5‐benzenetricarboxylic acid) was synthesized by an eco‐friendly hydrothermal method and characterized by single‐crystal X‐ray diffraction, IR and UV/Vis spectroscopy, photoluminescence (PL), and thermogravimetric analyses. The complex featured a 3D metal‐organic framework with Bi2 secondary building units. In the complex, the central Bi3+ is nine‐coordinate, three central Bi atoms and three BTC3– anions are interconnected into a ring with the dimension of 7.95 × 9.89 Å2. Moreover, the complex is decomposed at over 388 °C, showing its highly thermal stability. Further, the complex exhibits photocatalytic activity for the degradation of methyl orange (MO) solution under UV light irradiation, and its structure can keep consistent with the original one after 9 h photocatalytic reaction, indicating that it is also very stable under UV light. Therefore, it could be anticipated the novel coordination complex will be a stable ultraviolet light catalyst.  相似文献   

12.
This work presents the characterization and preparation of three‐dimensionally ordered macroporous TiO2 and TiO2/WO3 composite nanoparticles with enhanced visible‐light‐responsive properties for rhodamine B (Rh B) photodegradation. The 3DOM TiO2 and TiO2/WO3 composites were prepared through a dip‐infiltrating sol‐gel process using a polystyrene (PS) colloidal crystal template. The materials were characterized by SEM, TEM, XRD, BET, XPS and UV/Vis. The 3DOM TiO2/WO3 composite structures ranged from well‐defined 3DOM structures, which are highly ordered and interconnected via small pore windows, to collapsed three‐dimensional structures as the WO3 content increased. The photoresponse range and specific surface area of the composite increased with less than 0.025 g of WCl6. The 3DOM TiO2/WO3 composite with less than 0.025 g of WCl6 exhibited a higher catalytic activity than 3DOM TiO2 for the photocatalytic degradation of Rh B under simulated sunlight illumination.  相似文献   

13.
Hierarchical macro‐/mesoporous N‐doped TiO2/graphene oxide (N‐TiO2/GO) composites were prepared without using templates by the simple dropwise addition mixed solution of tetrabutyl titanate and ethanol containg graphene oxide (GO) to the ammonia solution, and then calcined at 350 °C. The as‐prepared samples were characterized by scanning electron microscopy (SEM), Brunauer‐Emmett‐Teller (BET) surface area, X‐ray diffraction (XRD), Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), and UV‐Vis absorption spectroscopy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange in an aqueous solution under visible‐light irradiation. The results show that N‐TiO2/GO composites exhibited enhanced photocatalytic activity. GO content exhibited an obvious influence on photocatalytic performance, and the optimal GO addition content was 1 wt%. The enhanced photocatalytic activity could be attributed to the synergetic effects of three factors including the improved visible light absorption, the hierarchical macro‐mesoporous structure, and the efficient charge separation by GO.  相似文献   

14.
Uniform Bi2WO6 pancakes were prepared via a solvothermal route in a solvent mixture of glycerol (Gly) and water (V/V = 1). A variety of techniques including scanning electron microscopy, transmission electron micrographs, X-ray powder diffraction, Brunauer–Emmett–Teller, FT-IR spectra, and UV–Vis diffuse reflectance spectra, were employed to characterize the structure and properties of the as-obtained Bi2WO6. It was found that Bi2WO6 pancakes showed prominent photocatalytic performance for the degradation of rhodamine B (RhB) under visible light (λ ≥ 420 nm) irradiation, which can be attributed to its good crystallization, large surface area, unique morphology and structural features.  相似文献   

15.
Graphene oxide/Mg‐doped ZnO/tungsten oxide quantum dots composites (WQGOMZ) were prepared through co‐precipitation method, and were studied by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), Fluorescence spectra (FL), and UV–vis diffuse reflection spectra. Furthermore, the photocatalytic activity of resultant WQGOMZ was evaluated under nature sunlight. Experimental results showed that WO3QDs can remarkably heighten the photocatalytic activity of GOMZ composite, in which is nearly 6.58 times higher than that of GOMZ composite. Simultaneously, WQGOMZ composites possess optical memory ability and maintain high photocatalytic stability for more than 40 days. The enhanced photocatalytic activity and optical memory ability are attributed to the effective synergistic effect between ZnO and WO3QDs.  相似文献   

16.
Hierarchical Ag/Bi2WO6 nanomaterials were prepared by a facile one-step hydrothermal method in mixed acetic acid and ethylene glycol (EG) medium. EG is employed as mild reducing agent for the formation of metallic Ag from Ag+ precursors. In situ energy dispersive X-ray diffraction (EDXRD) monitoring showed that the hydrothermal formation kinetics of Bi2WO6 in the presence of EG was significantly slowed down due to its very high viscosity. The photocatalytic activities of Ag/Bi2WO6 composites were evaluated by the photodegradation of methylene blue (MB) under visible light irradiation. The photocatalytic activity of Bi2WO6 is strongly influenced by the Ag loading. The enhanced catalytic activity of the composites is based on the cooperative effects of plasmon absorption band and separation of photogenerated electron-hole pairs.  相似文献   

17.
One-dimensional Bi2WO6 nanofibers have been successfully synthesized by simple electrospinning processes. XRD, SEM and UV–visible diffuse reflectance spectra were used to characterize the nanofibers. The results indicated that the Bi2WO6 was composed of one-dimensional nanofibers, whose diameter was about 50 nm. Besides, the Bi2WO6 nanofibers exhibited excellent visible photocatalytic property in the photodegradation of methylene blue.  相似文献   

18.
In this paper, Bi2O3 and rare earth (La, Ce)‐doped Bi2O3 visible‐light‐driven photocatalysts were prepared in a Triton X‐100/n‐hexanol/cyclohexane/water reverse microemulsion. The resulting materials were characterized by X‐ray powder diffraction (XRD), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area, photoluminescence spectra (PLS) and UV–Vis diffuse reflectance spectroscopy. The XRD patterns of the as‐prepared catalysts calcined at 500°C exhibited only the characteristic peaks of monoclinic α‐Bi2O3. PLS analysis implied that the separation efficiency for electron‐hole has been enhanced when Bi2O3 was doped with rare earth. UV–Vis diffuse reflectance spectroscopy measurements presented an extension of light absorption into the visible region. The photocatalytic activity of the samples was evaluated by degradation of methyl orange (MO) and 2,4‐dichlorophenol (2,4‐DCP). The results displayed that the photocatalytic activity of rare earth‐doped Bi2O3 was higher than that of dopant‐free Bi2O3. The optimal dopant amount of La or Ce was 1.0 mol%. And the mechanisms of influence on the photocatalytic activity of the catalysts were discussed.  相似文献   

19.
张进  崔皓  翟建平 《无机化学学报》2014,30(12):2857-2862
以工业固体废弃物粉煤灰漂珠(fly ash cenospheres,FACs)为载体,采用水热法制备了新颖的漂珠负载Bi2WO6复合材料(Bi2WO6/FACs),通过X射线衍射(XRD),扫描电子显微镜(SEM),X-射线光电子能谱(XPS),和紫外-可见漫反射光谱(DRS)技术对其进行了表征。XRD数据显示了正交相Bi2WO6的特征衍射峰。DRS结果证实了引入FACs后Bi2WO6对可见光的吸收增强。在可见光的照射下,以亚甲基蓝溶液的光催化降解评价了Bi2WO6/FACs复合材料的光催化性能。结果表明:Bi2WO6/FACs的光催化性能优于纯Bi2WO6的,其一级反应速率常数(k)为后者的2.4倍。尤其是由于漂珠质轻中空的特性,Bi2WO6/FACS复合光催化剂可长时间漂浮于水面,既能充分吸收光能,又有利于催化剂的回收和重复利用。  相似文献   

20.
以工业固体废弃物粉煤灰漂珠(fly ash cenospheres, FACs)为载体, 采用水热法制备了新颖的漂珠负载Bi2WO6复合材料(Bi2WO6/FACs), 通过X射线衍射(XRD), 扫描电子显微镜(SEM), X-射线光电子能谱(XPS), 和紫外-可见漫反射光谱(DRS)技术对其进行了表征。XRD数据显示了正交相Bi2WO6的特征衍射峰。DRS结果证实了引入FACs后Bi2WO6对可见光的吸收增强。在可见光的照射下, 以亚甲基蓝溶液的光催化降解评价了Bi2WO6/FACs复合材料的光催化性能。结果表明:Bi2WO6/FACs的光催化性能优于纯Bi2WO6的, 其一级反应速率常数(k)为后者的2.4倍。尤其是由于漂珠质轻中空的特性, Bi2WO6/FACS复合光催化剂可长时间漂浮于水面, 既能充分吸收光能, 又有利于催化剂的回收和重复利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号