首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用脉冲电沉积与高温退火相结合的方法制备了镍酸镧(LaNiO3)纳米颗粒负载的二氧化钛(TiO2)纳米管阵列. 修饰于TiO2纳米管阵列上的LaNiO3纳米颗粒粒径小(< 10 nm)、分布均匀、负载量可控,一些LaNiO3纳米颗粒沉积于TiO2纳米管内. 紫外可见吸收光谱显示,LaNiO3/TiO2纳米管阵列的吸收带边较TiO2纳米管阵列明显红移,可见光吸收明显增强. 可见光下光催化降解罗丹明B(RhB)的结果表明,脉冲循环沉积500次制得的LaNiO3/TiO2纳米管阵列的光催化活性最佳,其对RhB光催化降解速率是TiO2纳米管阵列的3.5倍,并且表现出极好的光催化稳定性.  相似文献   

2.
通过光还原沉积法, 利用氧空位诱导作用, 在Ni掺杂的缺陷态TiO2纳米管阵列(TNT-Ni)上得到金属 Pd含量不同的Pd-TNT-Ni催化剂. 采用场发射扫描电子显微镜(SEM)、 X射线光电子能谱(XPS)、 紫外-可见 漫反射(UV-Vis DRS)、 表面光电压(SPV)、 光致发光光谱(PL)和电化学测试等表征手段, 探究了Pd与Ni掺杂的缺陷态TiO2纳米管阵列之间的强相互作用对其光吸收特性和载流子分离及传输效率的影响, 阐明了强相互 作用对材料光催化活性的调控机理, 提出了Pd增强Pd-TNT-Ni光催化性能的作用机理. 结果表明, 通过光还 原法制备的Pd纳米颗粒尺寸为10~20 nm的Pd120-TNT-Ni样品的光响应值为4.22 mA/cm2, 是未负载Pd样品光 响应值(1.14 mA/cm2)的3.7倍, 其具有最佳的平均产氢速率(5.16 mmol·g?1·h?1), 是TNT样品平均产氢速率 (0.45 mmol·g?1·h?1)的12倍, 表明Pd与缺陷态TiO2纳米管阵列之间的强相互作用驱动了载流子的分离及传输, 且Pd作为电子捕获势阱及反应活性位点, 显著提高了材料的光催化性能.  相似文献   

3.
利用有机物在薄层反应器中发生的耗竭氧化反应,研究了弱吸附型的葡萄糖和强吸附型的邻苯二甲酸氢钾在TiO2纳米管阵列(TNA)电极表面的光电催化反应性能和反应机制.研究表明,光电催化反应电流-时间(I-t)曲线的变化趋势能够很好地反映有机物在TNA电极表面的反应性能.对于弱吸附型的葡萄糖,由于其在TNA电极表面吸附能力弱,从溶液本体被吸附至电极表面较慢,致使葡萄糖在高浓度光催化反应时出现I-t曲线瞬时升高然后迅速下降,再呈现缓慢下降的变化趋势.对于强吸附型的邻苯二甲酸氢钾,其吸附性强且难降解,因而在电极表面总是存在着大量的邻苯二甲酸氢钾,导致溶液中邻苯二甲酸氢钾浓度升高时,光电催化反应的I-t曲线在瞬时升高,然后依然持续升高,之后才呈缓慢下降的变化趋势.本文还对有机物的吸附类型、吸附系数、反应机制等进行了分析.研究表明,利用薄层反应器的耗竭氧化反应,有助于深入了解有机物在电极表面的反应过程及其微观机制.  相似文献   

4.
运用溶胶-凝胶及低温水热法合成纳米TiO2/碳纳米管复合催化剂, 以甲基橙为目标降解物考察复合物的光催化活性. 运用X光衍射、透射电镜、Brunauer-Emmett-Teller低温氮气吸附、差热-热重分析及紫外-可见漫反射吸收光谱等表征催化剂. 结果表明, 与单纯纳米TiO2相比, 溶胶-凝胶法制备的复合催化剂的光催化活性显著提高, 实验条件下复合的碳纳米管最适含量为3%(碳纳米管/TiO2, 重量百分比), 复合催化剂经在缓和氧化气氛中焙烧处理可在保持碳纳米管热稳定前提下获得纳米TiO2的充分晶化. 观察到了低温水热合成的复合催化剂的甲基橙降解活性的进一步提升, 复合催化剂中纳米TiO2在碳纳米管表面分散均匀, TiO2和碳纳米管组分间的紧密和充分键合及低温水热条件下催化剂的大比表面积、超细粒径以及碳纳米管的热稳定等有利于复合催化剂的光催化活性. 进一步地, 探讨了复合催化剂中适量碳纳米管组分的光活性促活机制.  相似文献   

5.
TiO2与碳纳米管均是近15年来最受关注的功能材料。将TiO2与碳纳米管复合构建的TiO2/碳纳米管兼有两种材料的特点及优点,在许多领域得到广泛研究。本文基于国内外最新研究进展,系统综述了近年来逐步建立起来的制备TiO2/碳纳米管的方法,着重介绍了混合法、化学气相沉积法、静电纺丝法、溶胶-凝胶法、水热溶剂热法等几种比较主要的方法。并且以TiO2 /碳纳米管在光催化领域的应用研究为侧重点,详细分析了碳纳米管在促进TiO2光生电子-空穴分离、增强可见光吸收等方面的协同作用。文章最后指出相关研究中有待解决的问题,并对此类材料的发展趋势做了展望。  相似文献   

6.
在用阳极氧化法制备有序排列TiO2纳米管阵列薄膜的基础上,引入脉冲沉积工艺,成功实现了均匀、弥散分布的Cu2O纳米颗粒修饰改性TiO2纳米管阵列,形成Cu2O/TiO2纳米管异质结复合材料.利用场发射扫描电镜(FESEM)、场发射透射电镜(FETEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis DRS)对样品进行表征,重点研究了Cu2O/TiO2纳米管异质结的光电化学特性和对甲基橙(MO)的可见光催化降解性能.结果表明,Cu2O纳米颗粒均匀附着在TiO2纳米管阵列的管口和中部位置,所制备的Cu2O/TiO2纳米管异质结具有高效的可见光光催化性能;在浓度为0.01 mol?L-1的CuSO4溶液中制得的Cu2O/TiO2纳米管异质结表现出最好的电化学特性和光催化性能;另外,对Cu2O纳米颗粒影响光催化活性的机理进行了讨论.  相似文献   

7.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

8.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

9.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

10.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

11.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

12.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

13.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

14.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

15.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

16.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

17.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

18.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

19.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

20.
以ZnO纳米柱阵列为模板, 采用溶胶-凝胶法制备出TiO2/ZnO和N掺杂TiO2/ZnO的复合纳米管阵列. 扫描电镜(SEM)、X射线光电子能谱(XPS)和紫外-可见漫反射吸收光谱(UV-Vis)的结果表明: 两种阵列的纳米管均为六角形结构, 直径约为100 nm, 壁厚约为20 nm; 在N-TiO2/ZnO复合纳米管阵列中, 掺入的N离子主要是以N-Ox、N-C和N-N的形式化学吸附在纳米管表面, 仅有少量的N离子以取代式掺杂的方式占据TiO2晶格O的位置; 表面N物种形成的表面态能级和取代式掺杂导致带隙的窄化, 增强了纳米管阵列的光吸收效率, 促进了光生载流子的分离. 光催化实验结果表明, N离子的掺杂有利于N-TiO2/ZnO复合纳米管阵列光催化活性的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号