首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents for the simple flow over a flat plate the near‐wall profiles of mean flow and turbulence quantities determined with seven eddy‐viscosity turbulence models: the one‐equation turbulence models of Menter and Spalart & Allmaras; the k‐ω two‐equation model proposed by Wilcox and its TNT, BSL and SST variants and the $k-\sqrt{k}L$ two‐equation model. The results are obtained at several Reynolds numbers ranging from 107 to 2.5 × 109. Sets of nine geometrically similar Cartesian grids are adopted to demonstrate that the numerical uncertainty of the finest grid predictions is negligible. The profiles obtained numerically have relevance for the application of so‐called ‘wall function’ boundary conditions. Such wall functions refer to assumptions about the flow in the viscous sublayer and the ‘log law’ region. It turns out that these assumptions are not always satisfied by our results, which are obtained by computing the flow with full near‐wall resolution. In particular, the solution in the ‘log‐law’ region is dependent on the turbulence model and on the Reynolds number, which is a disconcerting result for those who apply wall functions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A recently proposed implicit scheme for tracking the filling front during liquid impregnation into porous moulds is extended to provide ‘one-shot’ predictions for the time to completely fill the mould and the location of the last point to fill. With general boundary conditions applied at the filling gates, it is shown that the time to fill and the location of the last point to fill can be predicted on solving, at most, two linear systems of equations (of size determined by the spatial discretization). This result is confirmed by numerical filling experiments that show, for a variety of mould cavities, that ‘one-shot’ solutions agree exactly with filling time and location predictions obtained with multi-time- step simulations.  相似文献   

3.
In this paper, we present a finite element model for free surface flows on fixed meshes. The main novelty of the approach, compared with typical fixed mesh finite element models for such flows, is that we take advantage of the particularities of free surface flow, instead of considering it a particular case of two‐phase flow. The fact that a given free surface implies a known boundary condition on the interface, allows us to solve the Navier–Stokes equations on the fluid domain uncoupled from the solution on the rest of the finite element mesh. This, together with the use of enhanced integration allows us to model low Froude number flows accurately, something that is not possible with typical two‐phase flow models applied to free surface flow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
A computationally efficient, high‐resolution numerical model of shallow flow hydrodynamics is described, based on dynamically adaptive quadtree grids. The numerical model solves the two‐dimensional non‐linear shallow water equations by means of an explicit second‐order MUSCL‐Hancock Godunov‐type finite volume scheme. Interface fluxes are evaluated using an HLLC approximate Riemann solver. Cartesian cut cells are used to improve the fit to curved boundaries. A ghost‐cell immersed boundary method is used to update flow information in the smallest cut cells and overcome the time step restriction that would otherwise apply. The numerical model is validated through simulations of reflection of a surge wave at a wall, a low Froude number potential flow past a circular cylinder, and the shock‐like interaction between a bore and a circular cylinder. The computational efficiency is shown to be greatly improved compared with solutions on a uniform structured grid implemented with cut cells. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
‘Fluid buckling’ is a phenomenon characterized mainly by the existence of fluid toroidal oscillations during flow. It appears when a high viscosity fluid flows vertically against a flat surface and may occur in industrial applications, as in injection molding of a propergol in complex‐shaped cavities. These coiling or folding oscillations appear during the mold filling stage, leading to air entrapment. To understand and to model this free surface flow problem, a convected level set method is proposed. First, a sinus filter is applied to the distance function to get a smooth truncation far from the interface. Second, the reinitialization is embedded in the transport equation model, avoiding it as a separate step during calculation. In order to validate the method, numerical results are presented on classical interface capturing benchmarks. Finally, results are shown on two‐dimensional and three‐dimensional viscous jet buckling problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper deals with the calculation of free surface flow of viscous incompressible fluid around the hull of a boat moving with rectilinear motion. An original method used to avoid a large part of the theoretical problems connected with free surface boundary conditions in three‐dimensional Navier–Stokes–Reynolds equations is proposed here. The linearised system of convective equations for velocities, pressure and free surface elevation unknowns is discretised by finite differences and two methods to solve the fully coupled resulting matrix are presented here. The non‐linear convergence of fully coupled algorithm is compared with the velocity–pressure weakly coupled algorithm SIMPLER. Turbulence is taken into account through Reynolds decomposition and k–ε or k–ω model to close the equations. These two models are implemented without wall function and numerical calculations are performed up to the viscous sub‐layer. Numerical results and comparisons with experiments are presented on the Series 60 CB=0.60 ship model for a Reynolds number Rn=4.5×106 and a Froude number Fn=0.316. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Most existing algorithms for two‐dimensional shallow water simulations treat multi‐dimensional waves using wave splitting or time splitting. This often results in anisotropy of the computed flow. Both wave splitting and time splitting are based on a local decomposition of the multi‐dimensional problem into one‐dimensional, orthogonal problems. Therefore, these algorithms handle boundary conditions in a very similar way to classical one‐dimensional algorithms. This should be expected to trigger a dependence of the number of boundary conditions on the direction of the flow at the boundaries. However, most computational codes based on alternate directions do not exhibit such sensitivity, which seems to contradict the theory of existence and uniqueness of the solution. The present paper addresses these issues. A Riemann solver is presented that aims to convert two‐dimensional Riemann problems into a one‐dimensional equivalent Riemann problem (ERP) at the interfaces between the computational cells. The ERP is derived by applying the theory of bicharacteristics at each end of the interface and by performing a linear averaging along the interface. The proposed approach is tested against the traditional one‐dimensional approach on the classical circular dambreak problem. The results show that the proposed solver allows the isotropy of the solution to be better preserved. Use of the two‐dimensional solver with a first‐order scheme may give better results than use of a second‐order scheme with a one‐dimensional solver. The theory of bicharacteristics is also used to discuss the issue of boundary conditions. It is shown that, when the flow is subcritical, the number of boundary conditions affects the accuracy of the solution, but not its existence and uniqueness. When only one boundary condition is to be prescribed, it should not be the velocity in the direction parallel to the boundary. When two boundary conditions are to be prescribed, at least one of them should involve the component of the velocity in the direction parallel to the boundary. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
9.
A low‐dimensional spectral method is used to solve the transient axisymmetric free surface flow inside thin cavities of arbitrary shape. The flow field is obtained on the basis of the lubrication equations, which are expanded in terms of orthonormal functions over the cavity gap. The formulation accounts for nonlinearities stemming from inertia and front location. The work is of close relevance to the filling stage during die casting, and injection molding, or the flow inside annular (extrusion) dies. Both flows under an imposed flow rate, and an imposed pressure at the cavity entrance are examined. The influence of inertia, aspect ratio, gravity, and wall geometry on the evolution of the front, flow rate, and pressure is assessed particularly in the early stage of flow, when a temporal behavior of the ‘boundary‐layer’ type develops. The multiple‐scale method is applied to obtain an approximate solution at small Reynolds number, Re. Comparison with the exact (numerical) solution indicates a wide range of validity for the multiple‐scale approach, including the moderately small Re range. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
The Navier–Stokes–Korteweg (NSK) system is a classical diffuse‐interface model for compressible two‐phase flow. However, the direct numerical simulation based on the NSK system is quite expensive and in some cases even not possible. We propose a lower‐order relaxation of the NSK system with hyperbolic first‐order part. This allows applying numerical methods for hyperbolic conservation laws and removing some of the difficulties of the original NSK system. To illustrate the new ansatz, we first present a local discontinuous Galerkin method in one and two spatial dimensions. It is shown that we can compute initial boundary value problems with realistic density ratios and perform stable computations for small interfacial widths. Second, we show that it is possible to construct a semi‐discrete finite‐volume scheme that satisfies a discrete entropy inequality. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Mould filling processes, in which a material flow front advances through a mould, are typical examples of moving boundary problems. The moving boundary is accompanied by a moving contact line at the mould walls causing, from a macroscopic modelling viewpoint, a stress singularity. In order to be able to simulate such processes, the moving boundary and moving contact line problem must be overcome. A numerical model for both two- and three-dimensional mould filling simulations has been developed. It employs a pseudo-concentration method in order to avoid elaborate three-dimensional remeshing, and has been implemented in a finite element program. The moving contact line problem has been overcome by employing a Robin boundary condition at the mould walls, which can be turned into a Dirichlet (no-slip) or a Neumann (free-slip) boundary condition depending on the local pseudo-concentration. Simulation results for two-dimensional test cases demonstrate the model's ability to deal with flow phenomena such as fountain flow and flow in bifurcations. The method is by no means limited to two-dimensional flows, as is shown by a pilot simulation for a simple three-dimensional mould. The reverse problem of mould filling is the displacement of a viscous fluid in a tube by a less viscous fluid, which has had considerable attention since the 1960's. Simulation results for this problem are in good agreement with results from the literature. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
The behaviour of the wake Strouhal number for flow past a cylinder close to a free surface at both low and moderate Froude numbers is investigated numerically. For the low Froude number case (i.e., gravity-dominated), the results obtained are similar to those for flow past a cylinder close to an adjacent no-slip boundary. As the distance between the wall and the cylinder is reduced, the Strouhal number, as measured from the time varying lift, increases to a maximum at a gap ratio of 0.70. Further gap reduction leads to a rapid decrease in the Strouhal number, with shedding finally ceasing altogether at gap ratios below 0.16. The agreement between the results for a free surface and a no-slip boundary suggests that the mechanism behind the suppression of vortex shedding is common. For flow at a fixed gap ratio and a moderate Froude number, two distinctly different wake states are observed with the flow passing over the cylinder tending to switch from a state of attachment to the free surface, to one of separation from it, and then back again in a pseudo-periodic fashion. Even though there is a significant difference in Reynolds number, the predicted numerical two-dimensional behaviour is found to compare favourably with the experimental observations at higher Reynolds number.  相似文献   

13.
The two‐dimensional convection–diffusion‐type equations are solved by using the boundary element method (BEM) based on the time‐dependent fundamental solution. The emphasis is given on the solution of magnetohydrodynamic (MHD) duct flow problems with arbitrary wall conductivity. The boundary and time integrals in the BEM formulation are computed numerically assuming constant variations of the unknowns on both the boundary elements and the time intervals. Then, the solution is advanced to the steady‐state iteratively. Thus, it is possible to use quite large time increments and stability problems are not encountered. The time‐domain BEM solution procedure is tested on some convection–diffusion problems and the MHD duct flow problem with insulated walls to establish the validity of the approach. The numerical results for these sample problems compare very well to analytical results. Then, the BEM formulation of the MHD duct flow problem with arbitrary wall conductivity is obtained for the first time in such a way that the equations are solved together with the coupled boundary conditions. The use of time‐dependent fundamental solution enables us to obtain numerical solutions for this problem for the Hartmann number values up to 300 and for several values of conductivity parameter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Evolutionary algorithms mimic the process of natural evolution governed by the ‘survival of the fittest’ principle. In this work, a genetic algorithm (GA) is successfully used to solve problems in potential flow in a gradual contraction, viscous flow over a backward facing step, and non‐Newtonian flow using the power law model. Specifically, the GA heuristically searches the domain for potential solutions, precluding many convergence difficulties associated with the stiffness of a problem. The GA was able to solve problems that the gradient‐based method could not mainly because of its relative indifference to regions of high gradients when performing the search and that systems of discretized equations are never actually solved. The GA exhibited excellent scalability properties for solving problems with a large number of nodes. These results show evolutionary techniques to be of great utility in solving stiff problems in fluid flow. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
This study investigates the experimentally observed hysteresis in the mean flow field of an annular swirling jet with a stepped‐conical nozzle. The flow is simulated using the Reynolds‐averaged Navier–Stokes (RANS) approach for incompressible flow with a k–ε and a Reynolds stress transport (RSTM) turbulence model. Four different flow structures are observed depending on the swirl number: ‘closed jet flow’, ‘open jet flow low swirl’, ‘open jet flow high swirl’ and ‘coanda jet flow’. These flow patterns change with varying swirl number and hysteresis at low and intermediate swirl numbers is revealed when increasing and subsequently decreasing the swirl. The influence of the inlet velocity profile on the transitional swirl numbers is investigated. When comparing computational fluid dynamics with experiments, the results show that both turbulence models predict the four different flow structures and the associated hysteresis and multiple solutions at low and intermediate swirl numbers. Therefore, a good agreement exists between experiments and numerics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
We wish to demonstrate that it is judicious to combine various existing computational techniques that appeared for academic cases in seemingly unrelated areas, namely, semi‐implicit relaxation schemes for hyperbolic systems and adaptive multiresolution algorithms, in order to achieve fast and accurate simulations of realistic two‐phase flows problems in oil transportation. By ‘realistic’ we mean problems that are modelled by partial differential equation (PDE) systems closed by sophisticated thermodynamics and hydrodynamics laws, set out over a terrain‐induced geometry and associated with time‐dependent boundary conditions. Although the combination of these techniques is not a straightforward matter, it is made possible via a careful examination of the objectives of the simulation problem and suitable adaptations of which we shall give the details. Significant benchmarks demonstrate the efficiency of the proposed method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we study an interface transport scheme of a two‐phase flow of an incompressible viscous immiscible fluid. The problem is discretized by the characteristics method in time and finite elements method in space. The interface is captured by the level set function. Appropriate boundary conditions for the problem of mold filling are investigated, a new natural boundary condition under pressure effect for the transport equation is proposed, and an algorithm for computing the solution is presented. Finally, numerical experiments show and validate the effectiveness of the proposed scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A coupled Lagrangian interface‐tracking and Eulerian level set (LS) method is developed and implemented for numerical simulations of two‐fluid flows. In this method, the interface is identified based on the locations of notional particles and the geometrical information concerning the interface and fluid properties, such as density and viscosity, are obtained from the LS function. The LS function maintains a signed distance function without an auxiliary equation via the particle‐based Lagrangian re‐initialization technique. To assess the new hybrid method, numerical simulations of several ‘standard interface‐moving’ problems and two‐fluid laminar and turbulent flows are conducted. The numerical results are evaluated by monitoring the mass conservation, the turbulence energy spectral density function and the consistency between Eulerian and Lagrangian components. The results of our analysis indicate that the hybrid particle‐level set method can handle interfaces with complex shape change, and can accurately predict the interface values without any significant (unphysical) mass loss or gain, even in a turbulent flow. The results obtained for isotropic turbulence by the new particle‐level set method are validated by comparison with those obtained by the ‘zero Mach number’, variable‐density method. For the cases with small thermal/mass diffusivity, both methods are found to generate similar results. Analysis of the vorticity and energy equations indicates that the destabilization effect of turbulence and the stability effect of surface tension on the interface motion are strongly dependent on the density and viscosity ratios of the fluids. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Traditional wall functions have been used successfully for decades to decrease the computational cost for obtaining solutions to incompressible flows with equilibrium turbulence. However, these traditional, analytic wall functions are poorly suited for more complex flows. The present work describes an alternative approach named the ‘diffusion model’. The diffusion model is a subgrid model developed by Blottner and Bond that solves a system of ODEs in the near‐wall region instead of assuming an analytic profile. The diffusion model has previously been shown to reproduce profiles of various turbulence models through the log layer with fixed outer boundary conditions. This paper documents the implementation and the testing of the diffusion model fully coupled with a 3‐D Reynolds‐averaged Navier–Stokes (RANS) algorithm, using the Spalart–Allmaras model. The results indicate that the coupled algorithm is valid when the interface between diffusion model and the 3‐D RANS algorithm is below the outer edge of the log layer. Although the current work focuses on using steady 3‐D RANS outside of the log layer, modeling assumptions introduced in the current work could be used to derive a diffusion model for coupling with a large eddy simulation region. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents a stabilized extended finite element method (XFEM) based fluid formulation to embed arbitrary fluid patches into a fixed background fluid mesh. The new approach is highly beneficial when it comes to computational grid generation for complex domains, as it allows locally increased resolutions independent from size and structure of the background mesh. Motivating applications for such a domain decomposition technique are complex fluid‐structure interaction problems, where an additional boundary layer mesh is used to accurately capture the flow around the structure. The objective of this work is to provide an accurate and robust XFEM‐based coupling for low‐ as well as high‐Reynolds‐number flows. Our formulation is built from the following essential ingredients: Coupling conditions on the embedded interface are imposed weakly using Nitsche's method supported by extra terms to guarantee mass conservation and to control the convective mass transport across the interface for transient viscous‐dominated and convection‐dominated flows. Residual‐based fluid stabilizations in the interior of the fluid subdomains and accompanying face‐oriented fluid and ghost‐penalty stabilizations in the interface zone stabilize the formulation in the entire fluid domain. A detailed numerical study of our stabilized embedded fluid formulation, including an investigation of variants of Nitsche's method for viscous flows, shows optimal error convergence for viscous‐dominated and convection‐dominated flow problems independent of the interface position. Challenging two‐dimensional and three‐dimensional numerical examples highlight the robustness of our approach in all flow regimes: benchmark computations for laminar flow around a cylinder, a turbulent driven cavity flow at Re = 10000 and the flow interacting with a three‐dimensional flexible wall. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号