首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4‐Nitro‐1,2,3‐triazole was found to react with tert‐butanol in concentrated sulfuric acid to yield 1‐tert‐butyl‐4‐nitro‐1,2,3‐triazole as the only reaction product, whereas tert‐butylation and tritylation of 4‐nitro‐1,2,3‐triazole in presence of catalytic amount of sulfuric acid in benzene was found to provide mixtures of isomeric 1‐ and 2‐alkyl‐4‐nitro‐1,2,3‐triazoles with predominance of N2‐alkylated products. A new methodology for preparation of 1‐alkyl‐5‐nitro‐1,2,3‐triazoles from 1‐tert‐butyl‐4‐nitro‐1,2,3‐triazole via exhaustive alkylation followed by removal of tert‐butyl group from intermediate triazolium salts was demonstrated by the example of preparation of 1‐methyl‐5‐nitro‐1,2,3‐triazole.  相似文献   

2.
The dipole moments of twelve 2‐N‐substituted amino‐5‐nitro‐4‐methylpyridines ( I‐XII ) and three 2‐N‐substituted amino‐3‐nitro‐4‐methylpyridines ( XIII‐XV ) were determined in benzene. The polar aspects of intramolecular charge‐transfer and intramolecular hydrogen bonding were discussed. The interaction dipole moments, μint, were calculated for 2‐N‐alkyl(or aryl)amino‐5‐nitro‐4‐methylpyridines. Increased alkylation of amino nitrogen brought about an intensified push‐pull interaction between the amino and nitro groups. The solvent effects on the dipole moments of 2‐N‐methylamino‐5‐nitro‐4‐methyl‐( I ), 2‐N,N‐dimethylamino‐5‐nitro‐4‐methyl‐ ( II ) and 2‐N‐methylamino‐3‐nitro‐4‐methylpyridines ( XIII ) were different. Specific hydrogen bond solute‐solvent interactions increased the charge‐transfer effect in I , but it did not disrupt the intramolecular hydrogen bond in XIII.  相似文献   

3.
The preparations of 4‐ and 5‐nitro‐1‐vinylimidazole ( 2 and 7 ) are described. Selective reduction of the nitro group using Fe/dil.HCl is achieved for the 4‐nitro derivative but this is not effective when ethoxymethylenemalononitrile is used to trap the amine. For 5‐nitroimidazole studies the N‐vinyl substituent is kept masked as a 2‐chloroethyl group, which remains unchanged during catalytic reduction of the nitro function (Pd/C), and is revealed by HCl elimination at a later stage. In this way, the 1‐deazapurine 13 and the tricyclic derivative 14 have been prepared.  相似文献   

4.
Summary: Nucleophilic aromatic substitution of 2,6‐O‐dimethyl‐β‐cyclodextrin (β‐DMCD)‐complexed 4‐fluoro‐3‐nitroaniline derivatives with poly(vinyl amine) (PVAm) in water results in 2‐nitro‐1,4‐benzenediamine‐functionalized water‐soluble PVAms in one step. The 2‐nitro‐1,4‐benzenediamine moiety linked to the polymer is solvatochromic and undergoes protonation and deprotonation as function of pH as shown by UV‐Vis spectroscopy. The occurrence of an isosbestic point in the UV‐Vis spectrum is suitable to directly determine the pKa value using the Henderson‐Hasselbalch equation. The influence of the methyl group substitution of the polymer and the 2‐nitro‐1,4‐benzenediamine moiety on the pKa is discussed.

Structure of the 4‐N,N‐dimethyl‐2‐nitro‐1,4‐benzenediamine‐functionalized PVAm and its solution in water at varying pH.  相似文献   


5.
N‐(Substituted aryl/cyclohexyl)‐N'‐[5‐bromo‐5‐nitro‐2‐oxido‐1,3,2‐dioxaphosphorinane‐2‐yl]ureas RR'P(O)NHC(O)NHR' (5) were synthesized by the reactions of 2‐bromo‐2‐nitro‐1,3‐propanediol (4) with chlorides of aryl/cyclohexyl carbamidophosphoric acids (3) in the presence of triethylamine at room temperature. Their ir, 1H, 13C and 31P nmr spectral data are discussed.  相似文献   

6.
Ibis paper reports the properties of the novel tetra‐p‐nitro‐tetra‐O‐alkyl‐calix[4]arenes (alkyl= n‐C4H9, 1; n‐C8H17 2; n‐C12H25, 3; n‐C16H33, 4). X‐ray crystallographic analysis and 1H NMR revealed that they exist as pinched‐cone conformation in crystal or cone conformation in solution. EFISH experiments at 1064 nm in CHCl3, indicated that tetra‐p‐nitro‐tetra‐O‐butyl‐calix[4]arene (1) has higher hyperpolarizability β, values than the corresponding reference compound p‐nitro‐phenyl butyl ether, without red shift of the charge transfer band. Compounds 2, 3 and 4 with longer alkyl chains can form monolayer at the air/water.  相似文献   

7.
The mol­ecule of the title compound, C2H2N6O4, consists of three planar fragments, namely a tetrazole ring, a nitro­methyl group and a nitro group. The nitro group and the tetrazole cycle are arranged in the same plane, but the planar nitro­methyl group is located nearly orthogonal to this plane. The mol­ecules are packed in the crystal via van der Waals interactions.  相似文献   

8.
D ‐Desosamine is synthesized in 4 steps from methyl vinyl ketone and sodium nitrite. The key step in this chromatography‐free synthesis is the coupling of (R)‐4‐nitro‐2‐butanol and glyoxal (trimeric form) mediated by cesium carbonate, which affords in crystalline form 3‐nitro‐3,4,6‐trideoxy‐α‐D ‐glucose, a nitro sugar stereochemically homologous to D ‐desosamine. This strategy has enabled the syntheses of an array of analogous 3‐nitro sugars. In each case the 3‐nitro sugars are obtained in pure form by crystallization.  相似文献   

9.
15‐Cyano‐12‐oxopentadecano‐15‐lactone was synthesized in 59% total yield starting from 2‐nitrocyclododecanone by Michael addition to acrylaldehyde, followed by reaction with trimethylsilylcyanide, hydrolysis, ring‐expansion, and Nef reaction. A two‐step, one‐pot synthesis of intermediate 2‐hydroxy‐4‐(1‐nitro‐2‐oxycyclododecyl)butanenitrile from 3‐(1‐nitro‐2‐oxocyclododecyl)propanal was developed and the conditions for the Nef reaction were studied. 15‐Cyano‐12‐oxopentadecano‐15‐lactam was synthesized in 40% total yield starting from 2‐nitrocyclododecanone by Michael addition to acrylaldehyde, followed by Strecker reaction, ring‐expansion, and Nef reaction. The conditions for the Strecker and Nef reactions were studied. The structures of the target compounds, intermediates, and by‐product were characterized by IR, 1H‐ and 13C‐NMR, and elemental analysis or MS.  相似文献   

10.
N,N′‐Diethyl‐4‐nitrobenzene‐1,3‐diamine, C10H15N3O2, (I), crystallizes with two independent molecules in the asymmetric unit, both of which are nearly planar. The molecules differ in the conformation of the ethylamine group trans to the nitro group. Both molecules contain intramolecular N—H...O hydrogen bonds between the adjacent amine and nitro groups and are linked into one‐dimensional chains by intermolecular N—H...O hydrogen bonds. The chains are organized in layers parallel to (101) with separations of ca 3.4 Å between adjacent sheets. The packing is quite different from what was observed in isomeric 1,3‐bis(ethylamino)‐2‐nitrobenzene. 2,6‐Bis(ethylamino)‐3‐nitrobenzonitrile, C11H14N4O2, (II), differs from (I) only in the presence of the nitrile functionality between the two ethylamine groups. Compound (II) crystallizes with one unique molecule in the asymmetric unit. In contrast with (I), one of the ethylamine groups, which is disordered over two sites with occupancies of 0.75 and 0.25, is positioned so that the methyl group is directed out of the plane of the ring by approximately 85°. This ethylamine group forms an intramolecular N—H...O hydrogen bond with the adjacent nitro group. The packing in (II) is very different from that in (I). Molecules of (II) are linked by both intermolecular amine–nitro N—H...O and amine–nitrile N—H...N hydrogen bonds into a two‐dimensional network in the (10) plane. Alternating molecules are approximately orthogonal to one another, indicating that π–π interactions are not a significant factor in the packing. Bis(4‐ethylamino‐3‐nitrophenyl) sulfone, C16H18N4O6S, (III), contains the same ortho nitro/ethylamine pairing as in (I), with the position para to the nitro group occupied by the sulfone instead of a second ethylamine group. Each 4‐ethylamino‐3‐nitrobenzene moiety is nearly planar and contains the typical intramolecular N—H...O hydrogen bond. Due to the tetrahedral geometry about the S atom, the molecules of (III) adopt an overall V shape. There are no intermolecular amine–nitro hydrogen bonds. Rather, each amine H atom has a long (H...O ca 2.8 Å) interaction with one of the sulfone O atoms. Molecules of (III) are thus linked by amine–sulfone N—H...O hydrogen bonds into zigzag double chains running along [001]. Taken together, these structures demonstrate that small changes in the functionalization of ethylamine–nitroarenes cause significant differences in the intermolecular interactions and packing.  相似文献   

11.
A facile and highly efficient method for the preparation of α‐nitro‐α‐diazocarbonyl derivatives by a diazo‐transfer reaction involving (trifluoromethyl)sulfonyl azide has been developed. These substrates undergo a rhodium‐catalyzed cyclopropanation reaction with a variety of alkenes. A systematic study of the reaction indicated that the diastereoselectivity of the cyclopropanation could be effectively controlled through the modification of the steric bulk of the diazo reagent. A novel O? H insertion reaction of the metal? carbene complex derived from the α‐nitro‐α‐diazocarbonyl reagent afforded the corresponding novel α‐nitro‐α‐alkoxy carbonyl derivatives.  相似文献   

12.
The chiral oxazolidinone 1 (=[(3aS,6R,7aR)‐tetrahydro‐8,8‐dimethyl‐2‐oxo‐4H‐3a,6‐methano‐1,3‐benzoxazol‐3‐yl](oxo)acetaldehyde) was found to react stereoselectively with simple nitro compounds in the presence of Al2O3 or Bu4NF?3 H2O (TBAF) as catalysts, affording the diastereoisomeric nitro alcohols 3 – 6 with good asymmetric induction. When Al2O3 was used, the (S)‐configuration at the center bearing the OH group was generated, with the relative syn‐configuration for the major diastereoisomers. In the case of the nitro‐aldol reaction catalyzed by TBAF, an opposite asymmetric induction was found for two nitro compounds. In contrast to 1 , compound 12 (=((4R,5S)‐4‐methyl‐2‐oxo‐5‐phenyl‐1,3‐oxazolidin‐3‐yl)(oxo)acetaldehyde), a derivative of Evans auxiliary, gave rise to poor asymmetric induction in Henry reactions.  相似文献   

13.
The crystal structures of three 4‐amino derivatives of 7‐nitro‐2,1,3‐benzoxa­diazole with increasing substituent ring size, viz. 7‐nitro‐4‐(pyrrolidin‐1‐yl)‐2,1,3‐benzoxa­diazole, C10H10N4O3, 7‐nitro‐4‐(piperidin‐1‐yl)‐2,1,3‐benzoxa­diazole, C11H12N4O3, and 4‐(azepan‐1‐yl)‐7‐nitro‐2,1,3‐benzoxa­diazole, C12H14N4O3, have been determined in order to understand their photophysical behaviour. All three were found to crystallize in centrosymmetric space groups. There is considerable electron delocalization compared with the parent compound, although the five‐membered oxa­diazole ring apparently does not participate in this. The length of the C—N bond between the amino N atom and the 7‐nitro­benzoxa­diazole system is found to be shorter than in similar compounds, as is the C—Nnitro bond. In each structure, the nitro group lies in the plane of the benzoxa­diazole unit.  相似文献   

14.
Achiral p‐nitro­phenyl isocyanide, C7H4N2O2, crystallizes in the orthorhombic chiral space group P212121. Attractive intermolecular interactions between the nitro O atoms and both aromatic H and nitro N atoms of neighbouring mol­ecules are observed. The O⋯N interaction is surprisingly strong [N⋯O = 2.869 (2) Å] compared with other aromatic nitro compounds.  相似文献   

15.
Cyclization of (non)‐methylated nitro‐o‐phenylenediamines with cyanogen bromide provided nitro‐substituted 2‐aminobenzimidazoles in good up to excellent yields. Catalytic hydrogenation of 2‐amino‐1‐methyl‐5‐nitrobenzimidazole yielded 2,5‐diamino‐1‐methylbenzimidazole, which on treatment with 1,1,3,3‐tetramethoxypropane in methanol and subsequently after removal of methanol in polyphosphoric acid afforded food‐borne carcinogen 2‐amino‐3‐methylimidazo[4,5‐f]quinoline (IQ) in 20% yield. J. Heterocyclic Chem.,(2011).  相似文献   

16.
The sodium p‐toluenesulfinate mediated reaction of potassium cyanide with 4‐chlorocarbostyrils 8 , 16 , 18 , and 23 gave in all cases the highly fluorescent and stable 6‐methoxy‐2‐oxoquinoline‐3,4‐dicarbonitrile 9 (λexc 460 nm and λem 545 nm). This is remarkable, because starting carbostyrils 8 , 16 , 18 , and 23 had a chloro substituent, a nitro substituent, an acetylamino substituent, or a piperidinyl substituent in position 3. Hence, we observed not only a substitution of the 4‐chloro and expected 3‐chloro substituents by the cyanide nucleophile but also an exchange of a nitro substituent, an acetylamino substituent, and a piperidinyl substituent in position 3. The multistep insertion of substituents leading to 8 , 16 , 18 , and 23 started from 4‐hydroxy‐6‐methoxyquinolone 4 , easily obtained from p‐anisidine and malonic acid. Substitutions in position 3 gave 4‐hydroxy‐3‐nitro and 3‐chloro intermediates, which were converted to 3,4‐dichlorocarbostyril 8 and 4‐chloro‐3‐nitrocarbostyril 16 . Reduction of the 3‐nitro intermediate led to the 3‐acetylamino analog and subsequent chlorination led to 3‐acetylamino‐4‐chlorocarbostyril 18 . 4‐Chloro‐3‐piperidinylcarbostyril 23 was obtained from intermediate 3,3‐dichloroquinolinedione by subsequent amination, reduction and chlorination. Further, 3‐acetylamino‐4‐chlorocarbostyril 18 gave with lithium p‐toluenesulfinate highly fluorescent 3‐amino‐6‐methoxy‐4‐p‐tolylsulfonylquinolone 19 .  相似文献   

17.
A series of ortho‐, meta‐ and para‐substituted trans‐nitro aryl (phenyl and pyridyl) butadienes have been synthesized and characterized. The effect of substitution and positional selectivity on their fluorescence and photoisomerization were systematically investigated. Among all dienes, meta‐ and para‐nitro phenyl‐substituted derivatives exhibit remarkable solvatochromic emission shifts due to intramolecular charge transfer. On the other hand, ortho derivatives undergo regioselective isomerization upon photoexcitation in contrast to inefficient isomerization of para and meta nitro‐substituted dienes. Single crystal X‐ray analysis revealed existence of intramolecular hydrogen bonding between the nitro group and the hydrogen of the proximal double bond. This restricts the rotation of the proximal double bond thereby allowing regioselective isomerization. The observations were also supported by NMR spectroscopic studies.  相似文献   

18.
The title compounds, C13H15N3O5S and C11H10N2O4S2, respectively, both contain a phenyl­sulfonyl group connected, through a methyl­ene bridge, to either a substituted nitro­imidazole or nitro‐1,3‐thia­zole ring. In the imidazole‐containing mol­ecule, the nitro and sulfonyl groups are trans relative to the sulfonyl–methyl bond, while in the thia­zole‐containing mol­ecule, these substituents are cis. The stabilizing interactions within the crystals are also different between the two compounds.  相似文献   

19.
The preparation of several novel 3,5‐substituted‐indole‐2‐carboxamides is described. A 5‐nitro‐indole‐2‐carboxylate was elaborated to the 3‐benzhydryl ester, N‐substituted ester, and carboxylic acid intermedi ates, followed by conversion to the amide and then reduction of the 5‐nitro group to the amine. Indole‐2‐carboxamides with 3‐benzyl and 3‐phenyl substituents were prepared in four steps from either a 3‐bromo indole ester using the Suzuki reaction or from a 3‐keto substituted indole ester. N‐Alkylation of ethyl indole‐2‐carboxylate, followed by amidation and catalytic addition of 9‐hydroxyxanthene gave a 3‐xanthyl‐indole‐2‐carboxamide analog and a spiropyrrolo indole as a side product.  相似文献   

20.
The synthesis, 1H and 13C NMR spectra, and X‐ray structures are described for three dialkoxy ethynylnitrobenzenes that differ only in the length of the alkoxy chain, namely 1‐ethynyl‐2‐nitro‐4,5‐dipropoxybenzene, C14H17NO4, 1,2‐dibutoxy‐4‐ethynyl‐5‐nitrobenzene, C16H21NO4, and 1‐ethynyl‐2‐nitro‐4,5‐dipentoxybenzene, C18H25NO4. Despite the subtle changes in molecular structure, the crystal structures of the three compounds display great diversity. Thus, 1‐ethynyl‐2‐nitro‐4,5‐dipropoxybenzene crystallizes in the trigonal crystal system in the space group , with Z = 18, 1,2‐dibutoxy‐4‐ethynyl‐5‐nitrobenzene crystallizes in the monoclinic crystal system in the space group P 21/c , with Z = 4, and 1‐ethynyl‐2‐nitro‐4,5‐dipentoxybenzene crystallizes in the triclinic crystal system in the space group , with Z = 2. The crystal structure of 1‐ethynyl‐2‐nitro‐4,5‐dipropoxybenzene is dominated by planar hexamers formed by a bifurcated alkoxy sp‐C—H…O,O′ interaction, while the structure of the dibutoxy analogue is dominated by planar ribbons of molecules linked by a similar bifurcated alkoxy sp‐C—H…O,O′ interaction. In contrast, the dipentoxy analogue forms ribbons of molecules alternately connected by a self‐complementary sp‐C—H…O2N interaction and a self‐complementary sp2‐C—H…O2N interaction. Disordered solvent was included in the crystals of 1‐ethynyl‐2‐nitro‐4,5‐dipropoxybenzene and its contribution was removed during refinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号