首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electronic transport through a one-dimensional quantum dot array is theoretically studied. In such a system both electron reservoirs of continuum states couple with the individual component quantum dots of the array arbitrarily. When there are some dangling quantum dots in the array outside the dot(s) contacting the leads, the electron tunneling through the quantum dot array is wholly forbidden if the electron energy is just equal to the molecular energy levels of the dangling quantum dots, which is called as antiresonance of electron tunneling. Accordingly, when the chemical potential of the reservoir electrons is aligned with the electron levels of all quantum dots, the linear conductance at zero temperature vanishes if there are odd number dangling quantum dots; Otherwise, it is equal to 2e2/h due to resonant tunneling if the total number of quantum dots in the array is odd. This odd–even parity is independent of the interdot and the lead–dot coupling strength.  相似文献   

2.
We report carrier spin dynamics in highly uniform self-assembled InAs quantum dots and the observation of antiferromagnetic coupling between semiconductor quantum dots. The spin relaxation times in the ground state and the first excited state were measured to be 1.0 and 0.6 ns, respectively, without the disturbance of inhomogeneous broadening. The measured spin relaxation time decreases rapidly from 1.1 ns at 10 K to 200 ps at 130 K. This large change in the spin relaxation time is well-explained in terms of the mechanism of acoustic phonon emission. In coupled quantum dots, the formation of antiferromagnetic coupling is directly observed. Electron spins are found to flip at 80 ps after photoexcitation via the interdot exchange interaction. The antiferromagnetic coupling exists at temperatures lower than 50–80 K. A model calculation based on the Heitler–London approximation supports the finding that the antiferromagnetic coupling is observable at low temperature. These carrier spin features in quantum dots are suitable for the future quantum computation.  相似文献   

3.
We describe effects seen in coupled superconductor–semiconductor hybrid systems in various mesoscopic geometries. The hybrid structures consist of niobium films on high mobility InAs:GaSb quantum wells which form high transparency, low-resistance interfaces exhibiting a variety of effects in their resistive transitions and differential resistance scans. Grating structures show effects arising out of the confinement of quasiparticles while dot arrays show evidence of proximity induced superconductivity scaling as the density of dots. Superconducting dots deposited on narrow semiconductor channels show suppression of Andreev reflection which we attribute to interdot diffuse scattering from the walls of the channel.  相似文献   

4.
We have studied excess electron filling rule in the coupled multiple nanocrystal quantum-dot systems, i.e. quantum chain and quantum pattern, by the unrestricted Hartree–Fock–Roothaan method. Assuming each quantum dot of quantum pattern to be confined in a three-dimensional spherical potential well of finite depth, we have studied the intradot and interdot electron Coulomb and exchange interactions. By varying the center distance d between the coupled quantum dots, the transition from the strong- to weak-coupling situation is realized. For the systems in question, our results show that, with the filling of excess electrons into the quantum pattern, the corresponding chemical potentials form quasi-band structure, which is similar to the energy-band structure of crystal material. In each chemical-potential band of quantum pattern, the number of chemical-potential curves is equal to the number of quantum dots, and the distributions of them depend strongly on the quantum-dot arrangement structure of quantum pattern.  相似文献   

5.
We report a measurement of linear conductance through a series double dot as a function of the total double dot charge and the charge difference for interdot tunnel conductances between zero and one mode. The dots are defined by ten independently tunable electrostatic gates on the surface of a GaAs/AlGaAs heterostructure to allow separate adjustment of dot charge and interdot conductance. For weak interdot tunneling the measured double dot conductance agrees with a transport model in which each dot is individually governed by Coulomb blockade theory. As interdot tunnel conductance increases toward one mode, the measured conductance peak positions and shapes indicate both a relaxation of the charge quantization condition for individual dots and quantum mechanical charge sharing between dots. The results are in quantitative agreement with many body charge fluctuation theory.  相似文献   

6.
吴绍全  陈佳峰  赵国平 《物理学报》2012,61(8):87203-087203
从理论上研究了串型耦合双量子点之间库仑作用对其近藤共振的影响. 采用非平衡态格林函数和奴役玻色子平均场近似方法求解了系统的哈密顿量; 计算了系统电子的态密度、透射率、占居数和近藤温度随双量子点之间库仑作用能的变化, 同时也计算了电极处于极化时双量子点之间库仑作用能对系统电子态密度的影响. 结果表明,双量子点之间库仑作用能够极大地影响系统的基态物理性质. 同时还对相关的物理问题进行了讨论.  相似文献   

7.
We report low-temperature conductance measurements in the Coulomb blockade regime on two nominally identical tunnel-coupled quantum dots in parallel defined electrostatically in the two-dimensional electron gas of a GaAs/AlGaAs heterostructure. At low interdot tunnel coupling we find that the conductance measured through one dot is sensitive to the charge state of the neighboring dot. At larger interdot coupling the conductance data reflect the role of quantum charge fluctuations between the dots. As the interdot conductance approaches 2e2/h, the coupled dots behave as a single large dot.  相似文献   

8.
We study electron tunnelling through two small ferromagnetic dots. Quantum charge fluctuations and interdot coupling cause each Coulomb peak of conductance at zero interdot coupling to split. The interdot tunnel coupling depends on the relative orientation of magnetizations of the two dots, leading to different splitting energies of the Coulomb peaks in parallel and antiparallel magnetization alignments. As a result, a very large tunnelling magnetoresistance occurs near the Coulomb peaks, and its sign may be either positive or negative.  相似文献   

9.
By means of the slave-boson mean-field approximation, we theoretically investigate the Kondo and Coulomb interaction effects in spin-polarized transport through two coupled quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The density of states is calculated in the Kondo regime for the effect of the interdot Coulomb repulsion with both parallel and antiparallel lead-polarization alignments. Our results reveal that the interdot Coulomb interaction between quantum dots greatly influence the density of states of the dots.  相似文献   

10.
We theoretically study the thermoelectric transport properties through a triple quantum dots (QDs) device with the central QD coupled to a ferromagnetic lead, a superconducting one, and two side QDs with spin-dependent interdot tunneling coupling. The thermoelectric coefficients are calculated in the linear response regime by means of nonequilibrium Green's function method. The thermopower is determined by the single-electron tunneling processes at the edge of superconducting gap. Near the outside of the gap edge the thermopower is enhanced while thermal conductance is suppressed, as a result, the charge figure of merit can be greatly improved as the gap appropriately increases. In the same way, charge figure of merit also can be greatly improved near the outside of the gap edge by adjusting interdot tunneling coupling and asymmetry coupling of the side QDs to central QD. Moreover, the appropriate increase of the interdot tunneling splitting and spin polarization of ferromagnetic lead not only can improve charge thermopower and charge figure of merit, but also can enhance spin thermopower and spin figure of merit. Especially, the interdot tunneling splitting scheme provides a method of controlling charge (spin) figure merit by external magnetic field.  相似文献   

11.
We present a novel self-assembled quantum dot structure designed to spatially separate and store photo-generated electrons and holes in pairs of strain coupled quantum dots. The spatial separation of electron–hole pairs into quantum dots and strain-induced quantum dots has been investigated and verified by photoluminescence experiments. Results from time-resolved PL demonstrates that at low temperatures (3 K) the electron–hole pair can be stored for several seconds.  相似文献   

12.
Fabrication of double quantum dots by combining afm and e-beam lithography   总被引:1,自引:0,他引:1  
In recent years several attempts have been made to fabricate coupled quantum dots as a crucial element of quantum computing devices. One important challenge is to achieve a reliable control of the interdot tunneling. For this purpose we have combined direct nanolithography by local anodic oxidation (LAO) with standard electron-beam lithography. LAO is used to produce parallel double quantum dots. Additional metallic split gates are responsible for the control of the interdot coupling. We describe our fabrication scheme and demonstrate the function in low-temperature transport measurements.  相似文献   

13.
Multiscale simulations are used to bridge the surfactant templated assembly of individual approximately 1-10 nm cobalt dots, to their ordering into supramolecular arrays. Potential energy surfaces derived from ab initio calculations are input to lattice Monte Carlo simulations at atomic scales. By this process we quantitatively reproduce the experimental cobalt nanoparticle sizes. Crucially, we find that there is an effective short range attraction between pairs of nanodots. Mesoscale simulations show that these attractive interdot potentials are so short ranged that the dots can assemble only into orientally ordered hexatic phases as in the experiments.  相似文献   

14.
Transport spectroscopy reveals the microscopic features of few-electron quantum dots which justify the nameartificial atoms. New physics evolve when two quantum dots are coupled by a tunneling barrier. We study, both theoretically and experimentally, the tunneling spectroscopy on a double quantum dot. A detailed lineshape analysis of the conductance resonances proves that off-resonant coherent interdot tunneling governs transport through this system, while tunneling into the double quantum dot occurs resonantly. This coherent interdot tunneling witnesses the evolution of a delocalized electronic state which can be compared to a valence electron of thisartificial molecule.  相似文献   

15.
汤乃云 《物理学报》2013,62(5):57301-057301
本文采用六带K·P理论计算了耦合量子点在不同耦合距离下空穴基态特性, 探讨了轻重空穴及轨道自旋相互作用对耦合量子点空穴基态反成键态特性的影响. 在考虑多带耦合的情况下, 耦合量子点随着耦合强度的变化, 价带基态能级和激发态能级发生反交叉现象. 同时, 随着耦合距离的增加, 量子点基态轻重空穴波函数的比重发生变化,导致量子点空穴基态波函数从成键态反转成为反成键态. 同时研究发现, 因空穴基态及激发态波函数特性的转变, 电子、空穴的基态及激发态波函数的叠加强度发生的明显变化. 关键词: 耦合量子点 反键态 多带理论 自旋轨道耦合  相似文献   

16.
We study the ground state of two vertically coupled quantum dots as a function of the interdot distance within the spin density functional theory. The tunneling between the dots is included. For small and large interdot distances the atomic phases are recovered. For intermediate distances new molecule-type phases are predicted which can be observed experimentally in the addition energies. The results are interpreted in terms of an effective single particle picture and we find that Hund's rule breaks down for 11 and 12 electrons. The results are summarized in a phase diagram in which spin and isospin blockade regions are also found.  相似文献   

17.
熊永臣  王为忠  杨俊涛  黄海铭 《中国物理 B》2015,24(2):27501-027501
The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t.For small t,three dots form a local spin doublet.As t increases,due to the competition between V and t,there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet.When t is absent,the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage.While for sufficient t,the antiferromagnetic spin correlation between dots is enhanced,and the conductance is strongly suppressed for the bonding state is almost doubly occupied.  相似文献   

18.
Phonon-induced spin relaxation in coupled lateral quantum dots in the presence of spin-orbit coupling is calculated. The calculation for single dots is consistent with experiment. Spin relaxation in double dots at useful interdot couplings is dominated by spin-hot spots that are strongly anisotropic. Spin-hot spots are ineffective for a diagonal crystallographic orientation of the dots with a transverse in-plane field. This geometry is proposed for spin-based quantum information processing.  相似文献   

19.
丁国辉  叶飞 《中国物理快报》2007,24(10):2926-2929
We investigate electronic transport through a parallel double quantum dot (DQD) system with strong on-site Coulomb interaction, as well as the interdot tunnelling. By applying numerical renormalization group method, the ground state of the system and the transmission probability at zero temperature are obtained. For a system of quantum dots with degenerate energy levels and small interdot tunnel coupling, the spin correlations between the DQDs is ferromagnetic, and the ground state of the system is a spin-1 triplet state. The linear conductance will reach the unitary limit (2e^2/h) due to the Kondo effect at low temperature. As the interdot tunnel coupling increases, there is a quantum phase transition from ferromagnetic to anti-ferromagnetic spin correlation in DQDs and the linear conductance is strongly suppressed.  相似文献   

20.
Series of double quantum dots each with a size around 400 × 400nm2 have been realized by delineating a 2DEG in modulation-doped AlGaAs/GaAs with 100 nm wide Schottky split gates fabricated by an electron-beam lithography and a lift-off technique. The split gate in the middle of the double dot allows us to control interdot coupling widely. The charging diagram obtained from linear transports in the Coulomb blockade regime shows that the isolated dots merge into a single composite dot with increase of interdot coupling. A clear Coulomb staircase has been observed in the double-dot system at a limited high-bias condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号