首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prestressing technique is often employed in engineering practice to increase the bearing capacity of concrete beams in bending. Nevertheless, prestressing has been also applied successfully in numerous cases of steel members, bars or trusses. Whilst in members with concrete sections buckling instability is unlikely to occur, the phenomenon of twisting instability may appear in prestressed steel beams under bending as a special case of the lateral-torsional instability. In the present work, the influence of prestressing on the stability (twisting instability) of a simply supported beam induced by a rectilinear tendon is thoroughly studied. Useful results are gathered and presented in the form of interaction axial force—moment diagrams that can be used for a preliminary design of beams against twisting instability.  相似文献   

2.
梁的轴向运动会诱发其产生横向振动并可能导致屈曲失稳,对结构的安全性和可靠性产生重大的影响。本文重点研究了横向载荷作用下轴向运动梁的屈曲失稳及横向非线性振动特性。基于Hamilton变分原理,建立了横向载荷作用下轴向运动梁的动力学方程,获得了梁的后屈曲构型。使用截断Galerkin法,将控制方程改写成Duffing方程的形式。用同伦分析方法确定载荷作用下轴向运动梁的非线性受迫振动的封闭形式的表达式。结果表明,后屈曲构型对轴向速度和初始轴向应力有明显的依赖性。通过同伦分析法得出非线性基频的显式表达式,获得了初始轴向力会影响非线性频率随初始振幅和轴向速度的线性关系。另外,轴向外激励的方向也会改变系统固有频率。  相似文献   

3.
Soft materials and structures have recently attracted lots of research interests as they provide paramount potential applications in diverse fields including soft robotics, wearable devices, stretchable electronics and biomedical engineering. In a previous work, an Euler–Bernoulli finite strain beam model with thickness stretching effect was proposed for soft thin structures subject to stiff constraint in the width direction. By extending that model to account for the transverse shear effect, a Timoshenko-type finite strain beam model within the plane-strain context is developed in the present work. With some kinematic hypotheses, the finite deformation of the beam is analyzed, constitutive equations are deduced from the theory of finite elasticity, and by employing the standard variational method, the equilibrium equations and associated boundary conditions are derived. In the limit of infinitesimal strain, the new model degenerates to the classical extensible and shearable elastica model. The corresponding incremental equilibrium equations and associated boundary conditions are also obtained. Based on the new beam model, analytical solutions are given for simple deformation modes, including uniaxial tension, simple shear, pure bending, and buckling under an axial load. Furthermore, numerical solution procedures and results are presented for cantilevered beams and simply supported beams with immovable ends. The results are also compared with the previously developed finite strain Euler–Bernoulli beam model to demonstrate the significance of transverse shear effect for soft beams with a small length-to-thickness ratio. The developed beam model will contribute to the design and analysis of soft robots and soft devices.  相似文献   

4.
This paper deals with optimal shapes against buckling of an elastic nonlocal small-scale Pflüger beams with Eringen’s model for constitutive bending curvature relationship. By use of the Pontryagin’s maximum principle the optimality condition in form of a depressed quartic equation is obtained. The shape of the lightest (having the smallest volume) simply supported beam that will support given uniformly distributed follower type of load and axial compressive force of constant intensity without buckling, is determined numerically. A special attention is paid to the influence of the characteristic small length scale parameter of the nonlocal constitutive law to both critical load and optimal shape of the analyzed beams. For the case when distributed follower type of load is zero, our results reduce to those obtained recently for compressed nonlocal beam. Also the post buckling shape of the optimally shaped rod is studied numerically.  相似文献   

5.
基于Bernoulli-Euler梁理论,引入物理中面解耦了复合材料结构的面内变形与横向弯曲特性,研究了梯度多孔材料矩形截面梁在热载荷作用下的弯曲及过屈曲力学行为.假设沿梁厚度方向材料的性质是连续变化的,利用能量法推导了矩形截面梁的控制微分方程和边界条件,并用打靶法对无量纲化的控制方程进行数值求解.利用计算得到的结果分析了材料的性质、热载荷、边界条件对矩形截面梁非线性力学行为的影响.结果表明,对称材料模型下,固支梁与简支梁均显示出了典型的分支屈曲行为特征,而其临界屈曲热载荷值均会随着孔隙率系数的增加而单调增加.非对称材料模型下,固支梁仍显示出分支屈曲行为特征,但其临界屈曲热载荷不再随着孔隙率系数的变化而单调变化;而对于两端简支梁,发生了弯曲变形,弯曲挠度随载荷的增大而增大.  相似文献   

6.
The static stability of thin-walled composite beams, considering shear deformation and geometrical non-linear coupling, subjected to transverse external force has been investigated in this paper. The theory is formulated in the context of large displacements and rotations, through the adoption of a shear deformable displacement field (accounting for bending and warping shear) considering moderate bending rotations and large twist. This non-linear formulation is used for analyzing the prebuckling and postbuckling behavior of simply supported, cantilever and fixed-end beams subjected to different load condition. Ritz's method is applied in order to discretize the non-linear differential system and the resultant algebraic equations are solved by means of an incremental Newton-Rapshon method. The numerical results show that the beam loses its stability through a stable symmetric bifurcation point and the postbuckling strength is in relation with the buckling load value. Classical predictions of lateral buckling are conservative when the prebuckling displacements are not negligible and the non-linear buckling analysis is required for reliable solutions. The analysis is supplemented by investigating the effects of the variation of load height parameter. In addition, the critical load values and postbuckling response obtained with the present beam model are compared with the results obtained with a shell finite element model (Abaqus).  相似文献   

7.
Bistable structures, such as buckled beams or plates, are characterized by a two-well potential. Their nonlinear properties are currently exploited in actuators design (e.g. MEMS micropumps, switches, memory cells) to produce relatively high displacements and forces with low actuation energies. We investigate the use of distributed multiparameter actuation to control the buckling and postbuckling behavior of a three-layer piezoelectric beam pinned at either end. A two-parameter bending actuation controls the transversal motion, whilst an axial actuation and a beam end-shortening modulate the tangent bending stiffness. The postbuckling behavior is studied by reducing to a 2 dof system a nonlinear extensible elastica model. When the bending actuation is spatially symmetric, the postbuckling phenomena are analogue to those obtained for a transversal midspan force, being characterized by a snap-through instability. The use of a two-parameter actuation opens new transition scenarios, where it is possible to get true quasi-static transitions between the two specular equilibria of the buckled beam, without any instability phenomenon. The efficiencies of these different transition paths are discussed in terms of energetic requirements and stability properties. A numerical example shows the technical feasibility of the proposed actuation technique.  相似文献   

8.
针对含初始缺陷和脱层损伤的复合材料层合梁的轴向冲击动力屈曲问题进行了分析。基于Hamilton原理导出了考虑初始缺陷、轴向和横向惯性、横向剪切变形以及转动惯性影响时含脱层损伤复合材料梁的非线性动力屈曲控制方程;基于B-R准则,采用有限差分方法求解了受轴向冲击载荷作用下含脱层损伤复合材料梁的动力屈曲问题;讨论了冲击速度、初始几何缺陷、铺层角度以及脱层长度等因素对复合材料层合梁动力屈曲的影响。  相似文献   

9.
Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton’s principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.  相似文献   

10.
杨骁  李丽 《固体力学学报》2007,28(3):313-317
基于多孔介质理论和弹性梁的大挠度理论,并考虑轴向变形,在孔隙流体仅沿轴向扩散的假设下,建立了微观不可压饱和多孔弹性梁大挠度弯曲变形的一维非线性数学模型.在此基础上,忽略饱和多孔弹性梁的轴向应变,并利用Galerkin截断法,研究了两端可渗透的简支饱和多孔弹性梁在突加横向均布载荷作用下的拟静态弯曲,给出了饱和多孔梁弯曲时挠度、弯矩和轴力以及孔隙流体压力等效力偶等沿轴线的分布曲线.揭示了大挠度非线性和小挠度线性模型的结果差异,指出大挠度非线性模型的结果小于相应小挠度线性模型的结果,并且这种差异随着载荷的增大而增大.计算表明:当无量纲载荷参数q>5时,应该采用大挠度非线性数学模型进行研究.  相似文献   

11.
This paper presents an investigation on the buckling behaviour of single-walled carbon nanotubes under various loading conditions (compression, bending and torsion) and unveils several aspects concerning the dependence of critical measures (axial strain, bending curvature and twisting angle) on the nanotube length. The buckling results are obtained by means of an atomistic-scale generalized beam theory (GBT) that incorporates local deformation of the nanotube cross-section by means of independent and orthogonal deformation modes. Moreover, some estimates are also obtained by means of non-linear shell finite element analyses using Abaqus code. After classifying the buckling modes of thin-walled tubes (global, local and distortional), the paper addresses the importance of the two-wave distortional mode (flattening or ovalization mode) in their structural behaviour. Then, the well known expression to determine the critical strain of compressed nanotubes, which is based on Donnell theory for shallow shells, is shown to be inadequate for moderately long tubes due to warping displacements appearing in the distortional buckling modes. After that, an in-depth study on the buckling behaviour of nanotubes under compression, bending and torsion is presented. The variation of the critical kinematic measures (axial strain, bending curvature and twisting angle) with the tube length is thoroughly investigated. Concerning this dependence, some uncertainties that exist in the specific literature are meticulously explained, a few useful expressions to determine critical measures of nanotubes are proposed and the results are compared with available data collected from several published works (most of them, obtained from molecular dynamics simulations).  相似文献   

12.
The symmetric and asymmetric buckling of an initially curved micro beam subjected to an axial pre-stressing load and transversal distributed electrostatic force is studied. The analysis is based on a reduced order (RO) model resulting from the Galerkin decomposition with buckling modes of a straight beam used as the base functions. The criteria of symmetric limit point buckling and of non-symmetric bifurcation are derived in terms of the geometric parameters of the beam and the axial load. Two symmetry breaking conditions, defining the relations between the axial load and the geometric parameters of beams for which an asymmetric response bifurcates from the symmetric one, are obtained. The necessary criterion establishes the conditions for the appearance of bifurcation points on the unstable branch of the symmetric response curve; the sufficient criterion assures a realistic asymmetric buckling bifurcating from the stable branches of the symmetric response curve. A comparison between the RO model results and those obtained by direct numerical analysis shows good agreement between the two and indicates that the obtained criteria can be used to predict symmetric and non-symmetric buckling in electrostatically actuated curved pre-stressed micro beams. It is shown that while the symmetry breaking conditions are affected by the nonlinearity of the electrostatic force, its influence is less pronounced than in the case of the symmetric snap-through criterion. The nature of the latter and the relations between it and the symmetry breaking criteria are found to go through a prominent qualitative change as the initial distance between the beam and the electrode, characterizing the electrostatic force, changes.  相似文献   

13.
THERMAL POST-BUCKLING OF FUNCTIONALLY GRADED MATERIAL TIMOSHENKO BEAMS   总被引:12,自引:0,他引:12  
Analysis of thermal post-buckling of FGM (Functionally Graded Material) Timoshenko beams subjected to transversely non-uniform temperature rise is presented. By accurately considering the axial extension and transverse shear deformation in the sense of theory of Timoshenko beam, geometrical nonlinear governing equations including seven basic unknown functions for functionally graded beams subjected to mechanical and thermal loads were formulated. In the analysis, it was assumed that the material properties of the beam vary continuously as a power function of the thickness coordinate. By using a shooting method, the obtained nonlinear boundary value problem was numerically solved and thermal buckling and post-buckling response of transversely non-uniformly heated FGM Timoshenko beams with fixed-fixed edges were obtained. Characteristic curves of the buckling deformation of the beam varying with thermal load and the power law index are plotted. The effects of material gradient property on the buckling deformation and critical temperature of beam were discussed in details. The results show that there exists the tension-bend coupling deformation in the uniformly heated beam because of the transversely non-uniform characteristic of materials.  相似文献   

14.
The equilibrium and buckling equations are derived for the lateral buckling of a prismatic straight beam. A consistent finite strain constitutive law is used, which is based on a hyperelastic model for an isotropic material. The kinematics of the cross-sectional deformations are based on a Timoshenko type beam displacement of the cross-sectional plane using Euler angles and two shear finite rotations coupled with warping taken normal to the displaced plane. Also derived are the second order approximations to the displacements, curvatures, twist and internal actions. The constitutive relationships for the internal actions reveal new coupling terms between the bending moments, torsion and bimoment, which are functions of the cross-sectional warping and shear deformations. New Wagner type nonlinear torsion terms are derived which are functions of the warping of the cross-sectional plane, and are coupled to the twisting and shear deformations of the cross-section. Solutions are determined for the lateral buckling of a prismatic monosymmetric beam under pure bending and the flexural–torsional buckling under axial compression. For the flexural–torsional buckling problem it is found that the Euler type column buckling formula is consistent with Haringx’s column buckling formula while the torsional buckling formula is different to conventional equations. The second variation of the total potential is also derived. The effects of shear deformations are explored by examining the non-dimensional lateral buckling equation for a simply supported beam.  相似文献   

15.
粘贴压电层功能梯度材料Timoshenko梁的热过屈曲分析   总被引:1,自引:0,他引:1  
研究了上下表面粘贴压电层的功能梯度材料Timoshenko梁在升温及电场作用下的过屈曲行为。在精确考虑轴线伸长和一阶横向剪切变形的基础上,建立了压电功能梯度Timoshenko层合梁在热-电-机械载荷作用下的几何非线性控制方程。其中,假设功能梯度的材料性质沿厚度方向按照幂函数连续变化,压电层为各向同性均匀材料。采用打靶法数值求解所得强非线性边值问题,获得了在均匀电场和横向非均匀升温场内两端固定Timoshenko梁的静态非线性屈曲和过屈曲数值解。并给出了梁的变形随热、电载荷及材料梯度参数变化的特性曲线。结果表明,通过施加电压在压电层产生拉应力可以有效地提高梁的热屈曲临界载荷,延缓热过屈曲发生。由于材料在横向的非均匀性,即使在均匀升温和均匀电场作用下,也会产生拉-弯耦合效应。但是对于两端固定的压电-功能梯度材料梁,在横向非均匀升温下过屈曲变形仍然是分叉形的。  相似文献   

16.
This work is concerned with the thermo-electro-mechanical coupling transverse vibrations of axially moving piezoelectric nanobeams which reveal potential applications in self-powered components of biomedical nano-robot. The nonlocal theory and Euler piezoelectric beam model are employed to develop the governing partial differential equations of the mathematical model for axially moving piezoelectric nanobeams. The natural frequencies of nanobeams under simply supported and fully clamped boundary constraints are numerically determined based on the eigenvalue method. Subsequently, some detailed parametric studies are presented and it is shown that the nonlocal nanoscale effect and axial motion effect contribute to reduce the bending rigidity of axially moving piezoelectric nanobeam and hence its natural frequency decreases within the framework of nonlocal elasticity. Moreover, the natural frequency decreases with increasing the positive external voltage, axial compressive force and change of temperature, while increases with increasing the axial tensile force. The critical speed and critical axial compressive force are determined and the dynamical buckling behaviors of axially moving piezoelectric nanobeams are indicated. It is concluded the nonlocal nanoscale parameter plays a remarkable role in the size-dependent natural frequency, critical speed and critical axial compressive force.  相似文献   

17.
李清禄  李世荣 《计算力学学报》2014,31(3):340-344,389
基于直法线假设,采用可伸长梁的几何非线性理论,建立了功能梯度材料弹性组合曲梁受切线均布随从力作用下的静态大变形数学模型。该模型不仅计及了轴线伸长,同时也精确地考虑了梁的初始曲率对变形的影响以及轴向变形与弯曲变形之间的耦合效应。用打靶法数值求解了由金属和陶瓷两相材料所构成的一种FGM组合曲梁在沿轴线均布切向随动载荷作用下的非线性平面弯曲问题,给出了不同梯度指标下FGM弹性曲梁随载荷参数大范围变化的平衡路径,并与金属和陶瓷两种单相材料曲梁的相应特性进行了比较。  相似文献   

18.
The buckling load and its probabilistic nature (average and variance) of Bernoulli beams with stochastic material (bending stiffness) properties is derived analytically by a new functional perturbation method (FPM). A buckling shape function is assumed, based on the homogeneous solution and additional terms to account for the morphology effects. The buckling load in the transcendental equation is treated as a functional of the bending modulus (stiffness or compliance) field. Applying a functional perturbation to the above equation, the buckling load is found analytically to any desired degree of accuracy, as a function of material morphology. The FPM is executed using both stiffness and compliance statistical data. The impact of each of the two data sources on the solution accuracy is examined, showing that compliance based solutions are accurate for small correlation lengths. Statically indeterminate problems can be treated with no additional effort. An example of a simply supported beam is solved in detail. Comparison with previous studies, where stochastic finite element and Monte Carlo simulation were used, showed the relative accuracy and insight capabilities of the method. The clamped-free case is also studied to demonstrate that symmetry conditions, used for homogeneous beams to find the buckling load on the basis of a simply supported case, are not valid for heterogeneous beams.  相似文献   

19.
饱和多孔弹性Timoshenko梁的大挠度分析   总被引:1,自引:0,他引:1  
基于微观不可压饱和多孔介质理论和弹性梁的大挠度变形假设,考虑梁剪切变形效应,在梁轴线不可伸长和孔隙流体仅沿轴向扩散的限定下,建立了饱和多孔弹性Timoshenko梁大挠度弯曲变形的非线性数学模型.在此基础上,利用Galerkin截断法,研究了两端可渗透简支饱和多孔Timoshenko梁在突加均布横向载荷作用下的拟静态弯曲,给出了饱和多孔 Timoshenko梁弯曲变形时固相挠度、弯矩和孔隙流体压力等效力偶等随时间的响应.比较了饱和多孔Timoshenko梁非线性大挠度和线性小挠度理论以及饱和多孔 Euler-Bernoulli梁非线性大挠度理论的结果,揭示了他们间的差异,指出当无量纲载荷参数q>l0时,应采用饱和多孔Timoshenko梁或Euler-Bernoulli梁的大挠度数学模型进行分析,特别的,当梁长细比λ<30时,应采用饱和多孔Timoshenko梁大挠度数学模型进行分析.  相似文献   

20.
Li Jun  Hua Hongxing 《Meccanica》2011,46(6):1299-1317
The dynamic stiffness matrix method is introduced to solve exactly the free vibration and buckling problems of axially loaded laminated composite beams with arbitrary lay-ups. The Poisson effect, axial force, extensional deformation, shear deformation and rotary inertia are included in the mathematical formulation. The exact dynamic stiffness matrix is derived from the analytical solutions of the governing differential equations of the composite beams based on third-order shear deformation beam theory. The application of the present method is illustrated by two numerical examples, in which the effects of axial force and boundary condition on the natural frequencies, mode shapes and buckling loads are examined. Comparison of the current results to the existing solutions in the literature demonstrates the accuracy and effectiveness of the present method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号