首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We suggest an adaptive strategy for constructing a hierarchical basis for a p-version of the finite element method used to solve boundary value problems for second-order ordinary differential equations. The choice of the order of an element on each grid interval is based on estimates of the change, in the norm of C, of the approximate solution or the value of the functional to be minimized when increasing the degree of the basis function added on this interval. The results of numerical experiments estimating the method efficiency are given for sample problems whose solutions have singularities of the boundary layer type. We make a comparison with the p-version of the finite element method, which uses a uniform growth of the degree of the basis functions, and with the h-version, which uses uniform grid refinement along with an adaptive grid refinement and coarsening strategy.  相似文献   

2.
In this paper, the p-version finite element method and its fictitious domain extension, the finite cell method, are extended to the finite strain J2 plasticity. High-order shape functions are used for the finite element approximation of volume-preserving plastic dominated deformations. The accuracy and efficiency of p-version elements and cells in the finite plastic strain range are evaluated by the computation of two benchmark problems. It is shown that they provide locking free behavior and simplified meshing. These results are verified in comparison with the results of h-version elements in F-bar formulation. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Summary In theh-version of the finite element method, convergence is achieved by refining the mesh while keeping the degree of the elements fixed. On the other hand, thep-version keeps the mesh fixed and increases the degree of the elements. In this paper, we prove estimates showing the simultaneous dependence of the order of approximation on both the element degrees and the mesh. In addition, it is shown that a proper design of the mesh and distribution of element degrees lead to a better than polynomial rate of convergence with respect to the number of degrees of freedom, even in the presence of corner singularities. Numerical results comparing theh-version,p-version, and combinedh-p-version for a one dimensional problem are presented.  相似文献   

4.
Approximation theoretic results are obtained for approximation using continuous piecewise polynomials of degree p on meshes of triangular and quadrilateral elements. Estimates for the rate of convergence in Sobolev spaces , are given. The results are applied to estimate the rate of convergence when the p-version finite element method is used to approximate the -Laplacian. It is shown that the rate of convergence of the p-version is always at least that of the h-version (measured in terms of number of degrees of freedom used). If the solution is very smooth then the p-version attains an exponential rate of convergence. If the solution has certain types of singularity, the rate of convergence of the p-version is twice that of the h-version. The analysis generalises the work of Babuska and others to the case . In addition, the approximation theoretic results find immediate application for some types of spectral and spectral element methods. Received August 2, 1995 / Revised version received January 26, 1998  相似文献   

5.
In this paper, we propose a new interative and parallel solver, based on domain decomposition, for the h-p version of the finite element method in two dimensions. It improves our previous work in two aspects: (1) A subdomain may contain several super-elements of the coarse mesh, thus can be of arbitrary shape and size. This makes the solver more efficient and more flexible in computational practice. (2) The p-version components (i.e., the high order side and internal modes) in every element are treated separately, which results in better parallelism.  相似文献   

6.
We study the effect of numerical integration when the p-version of the finite element method is used to approximate the eigenpairs of elliptic partial differential operators. We obtain optimal orders of convergence for approximate eigenvalues and eigenvectors under a certain set of requirements on the quadrature rules employed. This is the same set of conditions that has been shown (in an earlier work) to be sufficient for the optimal approximation of the solutions of the corresponding source problems.  相似文献   

7.
In quasistatic solid mechanics the spatial as well as the temporal domain need to be discetized. For the spatial discretization usually elements with linear shape functions are used even though it has been shown that generally the p-version of the finite elemente method yields more effective discretizations, see e.g. [1], [2]. For the temporal discretization diagonal-implicit, see e.g. [4], and especially linear-implicit Runge-Kutta schemes, see e.g. [5], [6], have for smooth problems proven to be superior to the frequently applied Backward-Euler scheme (BE). Thus an approach combining the p-version of the finite element method with linear-implicit Runge-Kutta schemes, so-called Rosenbrock-type methods, is presented. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
A weak form quadrature element method is proposed and applied to analysis of plane elasticity problems. A variational formulation of plane elasticity problems is established and the differential quadrature analog of the derivatives in the functional is introduced. Several typical plane elasticity problems are studied to verify the proposed method. Results show that the method is highly efficient and promising. It is applied to the analysis of nearly incompressible materials and shown to be robust against volumetric locking. Similarities and dissimilarities, advantages and disadvantages as compared with other numerical methods, typically the p-version finite element method are discussed.  相似文献   

9.
The orthogonal systems of singular functions are considered. They are applied to the error analysis of the p-version of the finite element method for elliptic problems with degeneration of data and strong singularity of solution.  相似文献   

10.
We consider the approximation of Reissner–Mindlin plates with curved boundaries, using a p-version MITC finite element method. We describe in detail the formulation and implementation of the method, and emphasize the need for a Piola-type map in order to handle the curved geometry of the elements. The results of our numerical computations demonstrate the robustness of the method and suggest that it gives near exponential convergence when the error is measured in the energy norm. For the robust computation of quantities of engineering interest, such as the shear force, the proposed method yields very satisfactory results without the need for any additional post-processing. Comparisons are made with the standard finite element formulation, with and without post-processing.  相似文献   

11.
Dade's conjecture predicts that if p is a prime, then the number of irreducible characters of a finite group of a given p-defect is determined by local subgroups. In this paper we replace p by a set of primes π and prove a π-version of Dade's conjecture for π-separable groups. This extends the (known) p-solvable case of the original conjecture and relates to a π-version of Alperin's weight conjecture previously established by the authors.  相似文献   

12.
The p-version of the mixed finite element method is considered for nonlinear second-order elliptic problems. Existence and uniqueness of the approximation are demonstrated and optimal order error estimates in L2 are derived for the three relevant functions. Error estimates for the scalar function are also given in Lq, 2 ? q ? + ∞. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
In this paper, we propose a technique for simulating the fluid-structure interaction in blood vessels. A partitioned approach is used, which allows for an independent discretization of the fluid domain and the structural domain. We choose the finite volume method to solve the Navier-Stokes equations and the p-version of the finite element method (p-FEM) to solve the equations of geometrically nonlinear structural dynamics. The solution strategy can be seen as a first approach towards a comprehensive study of the hemodynamics in vascular substitutes with the goal of improving their long term functionality. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The popular MITC finite elements used for the approximation of the Reissner–Mindlin plate are extended to the case where elements of non-uniform degree p distribution are used on locally refined meshes. Such an extension is of particular interest to the hp-version and hp-adaptive finite element methods. A priori error bounds are provided showing that the method is locking-free. The analysis is based on new approximation theoretic results for non-uniform Brezzi–Douglas–Fortin–Marini spaces, and extends the results obtained in the case of uniform order approximation on globally quasi-uniform meshes presented by Stenberg and Suri (SIAM J. Numer. Anal. 34 (1997) 544). Numerical examples illustrating the theoretical results and comparing the performance with alternative standard Galerkin approaches are presented for two new benchmark problems with known analytic solution, including the case where the shear stress exhibits a boundary layer. The new method is observed to be locking-free and able to provide exponential rates of convergence even in the presence of boundary layers.  相似文献   

15.
We propose and analyze efficient preconditioners for solving systems of equations arising from the p-version for the finite element/boundary element coupling. The first preconditioner amounts to a block Jacobi method, whereas the second one is partly given by diagonal scaling. We use the generalized minimum residual method for the solution of the linear system. For our first preconditioner, the number of iterations of the GMRES necessary to obtain a given accuracy grows like log2 p, where p is the polynomial degree of the ansatz functions. The second preconditioner, which is more easily implemented, leads to a number of iterations that behave like p log3 p. Computational results are presented to support this theory. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 47–61, 1998  相似文献   

16.
Standard methods for predicting the mechanical response of a human femur bone from quantitative computer-tomography (qCT) scans are classically based on the h-version of the finite element method. These methods are often limited in accuracy and efficiency due to the need for segmentation and the slow convergence rate. With the Finite Cell Method (FCM) a high-order fictitious domain method has been developed that overcomes the aforementioned problems and provides accurate results when compared to high-order finite element methods and experimental results. Herein the FCM applied to the analysis of a patient-specific femur is presented. The femur model is determined based on qCT-scans and the elastic response under compression is presented in terms of strains and displacements. The results are compared with a p-FE analysis and validated by results from an in-vitro test of the modeled femur. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Summary This paper is the first one in the series of three which are addressing in detail the properties of the three basic versions of the finite element method in the one dimensional setting The main emphasis is placed on the analysis when the (exact) solution has singularity of x-type. The first part analyzes thep-version, the second theh-version and generalh-p version and the final third part addresses the problems of the adaptiveh-p version.Supported by the NSF Grant DMS-8315216Partially supported by ONR Contract N00014-85-K-0169  相似文献   

18.
We study convergence properties of a numerical method for convection-diffusion problems with characteristic layers on a layer-adapted mesh. The method couples standard Galerkin with an h-version of the nonsymmetric discontinuous Galerkin finite element method with bilinear elements. In an associated norm, we derive the error estimate as well as the supercloseness result that are uniform in the perturbation parameter. Applying a post-processing operator for the discontinuous Galerkin method, we construct a new numerical solution with enhanced convergence properties.  相似文献   

19.
The hp-version of the finite element method based on a triangular p-element is applied to free vibration of the orthotropic triangular and rectangular plates. The element's hierarchical shape functions, expressed in terms of shifted Legendre orthogonal polynomials, is developed for orthotropic plate analysis by taking into account shear deformation, rotary inertia, and other kinematics effects. Numerical results of frequency calculations are found for the free vibration of the orthotropic triangular and rectangular plates with the effect of the fiber orientation and plate boundary conditions. The results are very well compared to those presented in the literature.  相似文献   

20.
Summary. We prove an optimal a priori error estimate for the p-version of the boundary element method with hypersingular operators on piecewise plane open surfaces. The solutions of problems on open surfaces typically exhibit a singular behavior at the edges and corners of the surface which prevent an approximation analysis in H1. We analyze the approximation by polynomials of typical singular functions in fractional order Sobolev spaces thus giving, as an application, the optimal rate of convergence of the p-version of the boundary element method. This paper extends the results of [C. Schwab, M. Suri, The optimal p-version approximation of singularities on polyhedra in the boundary element method, SIAM J. Numer. Anal., 33 (1996), pp. 729–759] who only considered closed surfaces where the solution is in H1.Mathematics Subject Classification (2000): 41A10, 65N15, 65N38Financed by the FONDAP Program in Applied Mathematics, Chile.Supported by the FONDAP Program in Applied Mathematics and Fondecyt project no. 1010220, both Chile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号