首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 306 毫秒
1.
The results of measuring the pressure fluctuations on the wall of the nozzle of a hypersonic wind tunnel beneath a developed turbulent boundary layer are presented for the Mach number M = 7.5. On the basis of a statistical analysis, it is shown that the action of the turbulent flow is dynamically similar to the propagation of a random sequence of wave packets with continuously distributed temporal and spatial scales. Low-frequency disturbances are associated with large-scale structures of long duration that propagate at a mean-statistical velocity similar in value to the outer flow velocity. The continuous generation of weakly-correlated small-scale disturbances ensuring the maintenance and development of turbulence occurs chiefly in the inner region of the boundary layer. Spectral estimates of the power generated by the turbulent flow in the wall region of the boundary layer are presented.  相似文献   

2.
Measurements and scaling of wall shear stress fluctuations   总被引:2,自引:0,他引:2  
Measurements of velocity and wall shear stress fluctuations were made in an external turbulent boundary layer developed over a towed surface-piercing flat plate. An array of eight flush-mounted wall shear stress sensors was used to compute the space-time correlation function. A methodology for in situ calibration of the sensors for ship hydrodynamic applications is presented. The intensity of the wall shear stress fluctuations, τ rms/τ avg was measured as 0.25 and 0.36 for R θ =3,150 and 2,160 respectively. The probability density is shown to exhibit positive skewness, and lack of flow reversals at the wall. Correlations between velocity and wall shear stress fluctuations are shown to collapse with outer boundary layer length and velocity scales, verifying the existence of large-scale coherent structures which convect and decay along the wall at an angle of inclination varying from 10 to 13° over the range of Reynolds numbers investigated. The wall shear stress convection velocity determined from narrow band correlation measurements is shown to scale with outer variables. The space-time correlation of the wall shear is shown to exhibit a well-defined convective ridge, and to decay 80% over approximately for R θ =3,150. Published online: 7 November 2002  相似文献   

3.
The recent development of the elliptic model(He,et al. Phy. Rev. E, 2006), which predicts that the space-time correlation function Cu(r, τ) in a turbulent flow has a scaling form Cu(rE, 0) with rEbeing a combined space-time separation involving spatial separation r and time delay τ, has stimulated considerable experimental efforts aimed at testing the model in various turbulent flows. In this paper, we review some recent experimental investigations of the space-time correlation function in turbulent Rayleigh–B′enard convection. The experiments conducted at different representative locations in the convection cell confirmed the predictions of the elliptic model for the velocity field and passive scalar field, such as local temperature and shadowgraph images.The understanding of the functional form of Cu(r, τ) has a wide variety of applications in the analysis of experimental and numerical data and in the study of the statistical properties of small-scale turbulence. A few examples are discussed in the review.  相似文献   

4.
An experimental simulation of the interaction of vortex ring-like eddies with the sublayer of a turbulent boundary layer is investigated. An artificially generated vortex ring interacting with a Stokes' layer enables investigation of the interaction with reproducible initial conditions and in the absence of background turbulence. All of the observed features in the turbulent boundary layer production process such as the streaky structure, the pockets, the hairpin vortices, streak lift-up, oscillation, and breakup, have been observed to form. The model shows us that hairpin vortices can pinchoff and reconnect forming new vortex ring-like eddies. Interestingly, the model includes interactions that occur with low probability in the turbulent boundary layer, but which contribute significantly to transport, and may be the events most readily controllable.  相似文献   

5.
Measurements of turbulence with laser Doppler velocimetry (LDV) are compared for turbulent flows over a flat surface and a surface with sinusoidal waves of small wavelength. The wavy boundary was highly rough in that the flow separated. The Reynolds number based on the half-height of the channel and the bulk velocity was 46,000. The wavelength was 5 mm and the height to wavelength ratio was 0.1. The root-mean-squares of the velocity fluctuations are approximately equal if normalized with the friction velocity. This can be explained as a consequence of the approximate equality of the correlation coefficients of the Reynolds shear stress. Calculations with a direct numerical simulation (DNS) are used to show that the fluid interacts with the wall in quite different ways for flat and wavy surfaces. They show similarity in that large quadrant 2 events in the outer flow, for both cases, are associated with plumes that emerge from the wall region and extend over large distances. Measurements of skewness of the streamwise and wall-normal velocity fluctuations and quadrant analyses of the Reynolds shear stresses are qualitatively similar for flat and wavy surfaces. However, the skewness magnitudes and the ratio of the quadrant 2 to quadrant 4 contributions are larger for the wavy surface. Thus, there is evidence that turbulent structures are universal in the outer flow and for quantitative differences in the statistics that reflect differences in the way in which the fluid interacts with the wall.  相似文献   

6.
激波/湍流边界层干扰问题广泛存在于高速飞行器内外流动中, 激波干扰会导致局部流场出现强压力脉动, 严重影响飞行器气动性能和飞行安全. 为了考察干扰区内脉动压力的统计特性, 对来流马赫数2.25, 激波角33.2°的入射激波与平板湍流边界层相互作用问题进行了直接数值模拟研究. 在对计算结果进行细致验证的基础上, 分析比较了干扰区外层和物面脉动压力的典型统计特征, 如脉动强度、功率谱密度、两点相关和时空关联特性等, 着重探讨了两者的差异及其原因. 研究发现, 激波干扰对外层和物面压力脉动的影响差异显著. 分离区内脉动以低频特征为主, 随后再附区外层压力脉动的峰值频率往高频区偏移, 而物面压力脉动的低频能量仍相对较高. 两点相关结果表明, 外层和物面脉动压力的展向关联性均明显强于其流向, 前者积分尺度过激波急剧增长随后缓慢衰减, 而后者积分尺度整体上呈现逐步增大趋势. 此外, 时空关联分析结果指出, 脉动压力关联系数等值线仍符合经典的椭圆形分布, 干扰区下游压力脉动对流速度将减小, 外层对流速度仍明显高于物面.   相似文献   

7.
减阻工况下壁面周期扰动对湍流边界层多尺度的影响   总被引:1,自引:0,他引:1  
通过在平板壁面施加不同频率振幅的压电陶瓷振子周期性扰动,进行了湍流边界层主动控制减阻的实验研究.在压电陶瓷振子最大减阻工况下(80 V和160Hz),使用单丝边界层探针对压电振子自由端下游2mm处进行测量,得到不同法向位置流向速度信号的时间序列.通过对比施加控制前后的多尺度分析,发现压电振子产生的扰动只对近壁区产生影响,使得近壁区大尺度脉动降低,小尺度脉动强度增大,而对边界层的外区则基本没有影响.进一步对大尺度和小尺度的脉动信号进行条件平均,发现压电振子产生的扰动对小尺度脉动的影响在时间相位上并不均匀,小尺度脉动强度在大尺度脉动为正时比在大尺度脉动为负时具有更明显的增加.这表明壁面周期扰动主要通过使大尺度高速扫掠流体破碎为小尺度结构,来影响相应的高壁面摩擦事件,从而达到减阻效果.   相似文献   

8.
Experiments on the modulation characteristics of the wall shear stress τ′-longitudinal velocity u′ and u′−u′ space–time correlations are reported in a forced turbulent channel flow in a wide range of imposed frequencies. The resulting integral and Taylor scale properties are discussed in detail in the low buffer layer under steady and unsteady flow conditions. It is shown that the small-scale turbulence is sensitive to the imposed unsteadiness since the amplitude and phase of the Taylor length scale vary considerably in the imposed frequency range investigated here. The Taylor hypothesis is acceptably valid in steady and unsteady wall layers just above the low buffer layer. Production and instantaneous pressure gradients are mostly responsible for the deviation of the frozen turbulence-state in the viscous and low buffer sublayers.  相似文献   

9.
Inflow boundary conditions for turbulent plane channel flow are generated by solving evolution equations only for the most energetic eddies. The dynamical systems are derived by Galerkin projecting the Navier-Stokes equations onto the subspaces spanned by various sets of the most energetic modes from a proper orthogonal decomposition (POD) of the same flow. Low-energy small-scale POD-modes are added randomly in order to impose some energy in the high wave number range. This is found to be crucial in order to more rapidly establish the correct level of dissipation and achieve a more realistic distribution of energy between the velocity components. The method is tested on a DNS of R*=180 and a LES of R*=400. Statistics such as mean velocity, rms-profiles, turbulent shear-stress and energy spectra become close to the fully developed state within 1500 wall units downstream the inlet. PACS 47.27.Eq  相似文献   

10.
This paper investigates the layered structure of a turbulent plane wall jet at a distance from the nozzle exit. Based on the force balances in the mean momentum equation, the turbulent plane wall jet is divided into three regions: a boundary layer-like region (BLR) adjacent to the wall, a half free jet-like region (HJR) away from the wall, and a plug flow-like region (PFR) in between. In the PFR, the mean streamwise velocity is essentially the maximum velocity, and the simplified mean continuity and mean momentum equations result in a linear variation of the mean wall-normal velocity and Reynolds shear stress. In the HJR, as in a turbulent free jet, a proper scale for the mean wall-normal flow is the mean wall-normal velocity far from the wall and a proper scale for the Reynolds shear stress is the product of the maximum mean streamwise velocity and the velocity scale for the mean wall-normal flow. The BLR region can be divided into four sub-layers, similar to those in a canonical pressure-driven turbulent channel flow or shear-driven turbulent boundary layer flow. Building on the log-law for the mean streamwise velocity in the BLR, a new skin friction law is proposed for a turbulent wall jet. The new prediction agrees well with the correlation of Bradshaw and Gee (1960) over moderate Reynolds numbers, but gives larger skin frictions at higher Reynolds numbers.  相似文献   

11.
Direct Numerical Simulation of a linearly accelerating channel flow starting from an initially statistically steady turbulent flow has been performed. It is shown that the response of the accelerating flow is fundamentally the same as that of the step-change transient flow described in He and Seddighi (J Fluid Mech 715:60–102, 2013). The flow structure again behaves like a boundary layer bypass transition undergoing three distinct phases, namely, (i) initially (pre-transition), the flow is laminar-like and the pre-existing turbulent structures are modulated resulting in elongated streaks leading to a strong and continuous increase in the streamwise fluctuating velocity but little changes in the other two components; (ii) it then undergoes transition when isolated turbulent spots are generated which spread and merge with each other, and (iii) they eventually cover the entire surface of the wall when the flow is fully turbulent. The similarity between the turbulence responses in the two flows is significant noting the contrasting features of the two types of mean flow unsteadiness: in the step-change flow, a sharp boundary layer is resulted in nearly instantly on the wall which closely resembles the spatially developing boundary layer, whereas the linear flow acceleration causes a continuing change of velocity gradient adjacent to the wall which propagates into the flow field with time, resulting in a gradually-developing boundary layer. There are, however, quantitative differences in the detailed behavior of the two flows and especially the transition is much delayed in the accelerating flow. It is also shown that the late pre-transition and early transition stages in both flows are characterised by significantly increased inwards sweep events in the wall region and ejection events in the outer layer. The flatness of the wall-normal velocity increases markedly near the wall around the time of onset of transition as a consequence of the huge intermittency of the velocity fluctuations. That is, there are long periods of quiescent flow coupled with occasional turbulent bursts.  相似文献   

12.
用平均速度剖面法测量壁湍流摩擦阻力   总被引:10,自引:1,他引:9  
樊星  姜楠 《力学与实践》2005,27(1):28-30
用IFA300恒温热线风速仪精细测量风洞中不同雷诺数流动条件下的平板湍流边界层近壁区域对数律平均速度剖面.利用平板湍流边界层近壁区域的对数律平均速度剖面与壁面摩擦速度、流体黏性系数等内尺度物理量的关系和壁面摩擦速度与壁面摩擦切应力的关系,在准确测量平板湍流边界层近壁区域对数律平均速度剖面的基础上,测量平板湍流边界层的壁面摩擦阻力.实现了平板湍流边界层壁面摩擦阻力的无干扰或微小干扰测量.该种方法操作简便,不需要在流场中安装测力天平、传感器等复杂的测量装置,不需要对湍流边界层的壁面进行破坏,不会影响湍流边界层壁面附近区域原有的流场条件,是一种切实可行的测量平板湍流边界层壁面摩擦阻力的简便方法.  相似文献   

13.
The present paper deals with the experimental analysis of a strong decelerated turbulent boundary layer developed on a flat plate. The aim of the study was to examine the effects of pressure gradient on a non-equilibrium boundary layer while indicating local areas of equilibrium flow. The effect of the Reynolds number on a turbulent boundary layer developed with matching the external pressure gradient conditions was also analysed. The emphasis was on the analysis of mean flow statistics i.e. mean velocity profiles, streamwise Reynolds stress and the effect of large- and small-scale interactions by analysing the skewness factor and energy isocontours maps. The comparative analysis of the external data indicated that the structure of the turbulent boundary layer depends not only on local effects of pressure gradient but also on the upstream history of the flow. For the same condition of pressure gradient, the increased momentum is observed near the wall with the increase of the Reynolds number at the Incipient Detachment, where increased turbulence production is also observed, leading to the failure of the outer scaling methods. Surprisingly, the effect of the Reynolds number decays at the intermittent transitory detachment where similar profiles were observed. The upper inflection point in the mean profile corresponded well with the outer maximum of the Reynolds stress and zero crossing of skewness factor. Position of this point occurs at different locations, depending on the flow history effects. The last observation demonstrates that the inflection points results from large- and small-scale interactions, which led to the increased convection velocity of small scales near the wall.  相似文献   

14.
An efficient hybrid uncorrelated wall plane waves–boundary element method (UWPW-BEM) technique is proposed to predict the flow-induced noise from a structure in low Mach number turbulent flow. Reynolds-averaged Navier-Stokes equations are used to estimate the turbulent boundary layer parameters such as convective velocity, boundary layer thickness, and wall shear stress over the surface of the structure. The spectrum of the wall pressure fluctuations is evaluated from the turbulent boundary layer parameters and by using semi-empirical models from literature. The wall pressure field underneath the turbulent boundary layer is synthesized by realizations of uncorrelated wall plane waves (UWPW). An acoustic BEM solver is then employed to compute the acoustic pressure scattered by the structure from the synthesized wall pressure field. Finally, the acoustic response of the structure in turbulent flow is obtained as an ensemble average of the acoustic pressures due to all realizations of uncorrelated plane waves. To demonstrate the hybrid UWPW-BEM approach, the self-noise generated by a flat plate in turbulent flow with Reynolds number based on chord Rec = 4.9 × 105 is predicted. The results are compared with those obtained from a large eddy simulation (LES)-BEM technique as well as with experimental data from literature.  相似文献   

15.
本文采用时间解析的二维粒子图像测速技术,对零压力梯度光滑以及汇聚和发散沟槽表面平板湍流边界层统计特性和流动结构进行了研究.结果表明在垂直于汇聚和发散沟槽表面的对称平面内,相对于光滑壁面,发散沟槽壁面使当地边界层厚度、壁面摩擦阻力、湍流脉动、雷诺应力等明显减小;而汇聚沟槽壁面对湍流边界层特性和流动结构的影响正好相反,汇聚沟槽使壁面流体有远离壁面向上运动的趋势,因而导致边界层厚度增加了约43%;同时,在汇聚沟槽表面情况下流向大尺度相干结构更容易形成,这对减阻是不利的.此外,顺向涡数量在湍流边界层的对数区均存在一个极大值,发散沟槽表面所对应的极大值位置更靠近沟槽壁面,而在汇聚沟槽表面则有远离壁面的趋势,由顺向涡诱导产生的较强的喷射和扫掠运动会在湍流边界层中产生较强的剪切作用,顺向涡数量的减少是发散沟槽壁面当地摩擦阻力降低的主要原因.  相似文献   

16.
A turbulent channel flow and the flow around a cubic obstacle are calculated by the moving particle semi‐implicit method with the subparticle‐scale turbulent model and a wall model, which is based on the zero equation RANS (Reynolds Averaged Navier‐Stokes). The wall model is useful in practical problems that often involve high Reynolds numbers and wall turbulence, because it is difficult to keep high resolution in the near‐wall region in particle simulation. A turbulent channel flow is calculated by the present method to validate our wall model. The mean velocity distribution agrees with the log‐law velocity profile near the wall. Statistical values are also the same order and tendency as experimental results with emulating viscous layer by the wall model. We also investigated the influence of numerical oscillations on turbulence analysis in using the moving particle semi‐implicit method. Finally, the turbulent flow around a cubic obstacle is calculated by the present method to demonstrate capability of calculating practical turbulent flows. Three characteristic eddies appear in front of, over, and in the back of the cube both in our calculation and the experimental result that was obtained by Martinuzzi and Tropea. Mean velocity and turbulent intensity profiles are predicted in the same order and have similar tendency as the experimental result. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in the logarithmic region of the turbulent boundary layer in a water tunnel.The Reynolds number based on momentum thickness is Reθ = 2 460.The instantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid,which is flanked on either side by highspeed ones.Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases,and the main vortex characteristic in different wall-normal regions can be reflected by comparing the proportion of ejection and its contribution to Reynolds stress with that of sweep event.The pre-multiplied power spectra and two-point correlations indicate the presence of large-scale motions in the boundary layer,which are consistent with what have been termed very large scale motions(VLSMs).The three dimen-sional spatial correlations of three components of velocity further indicate that the elongated low-speed and highspeed regions will be accompanied by a counter-rotating roll modes,as the statistical imprint of hairpin packet structures,all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer(TBL).  相似文献   

18.
The streamwise velocity components at different vertical heights in wall turbulence were measured. Wavelet transform was used to study the turbulent energy spectra, indicating that the global spectrum results from the weighted average of Fourier spectrum based on wavelet scales. W'avelet transform with more vanishing moments can express the declining of turbulent spectrum. The local wavelet spectrum shows that the physical phenomena such as deformation position in the boundary layer, and the or breakup of eddies are related to the vertical energy-containing eddies exist in a multi-scale form. Moreover, the size of these eddies increases with the measured points moving out of the wall. In the buffer region, the small scale energy-containing eddies with higher frequency are excited. In the outer region, the maximal energy is concentrated in the low-frequency large-scale eddies, and the frequency domain of energy-containing eddies becomes narrower.  相似文献   

19.
Spanwise space–time correlations of the wall shear stress and the longitudinal velocity fluctuations in the low buffer layer of an unsteady channel flow are reported. The imposed amplitude is 20% of the centerline velocity and the imposed frequency covers a large range going from the quasi-steady limit to the bursting frequency of the corresponding steady flow. The unsteady spanwise correlation coefficient is investigated both through its own modulation characteristics (amplitude and phase shifts) and those of the resulting streak spacing. A good correspondence is found between the modulation of the streak spacing and that of the ejection period. The data is further analyzed by temporal filtering of the wall shear stress and streamwise velocity fluctuations. It is shown that the large outer-layer structures play a “passive” role in the unsteady response of the near wall turbulence. The inner wall eddies, in return, are amply responsible for the unsteady reaction of both the turbulent wall shear stress and the streamwise velocity intensities in the buffer layer.  相似文献   

20.
A direct numerical simulation (DNS) dataset of a turbulent boundary layer (TBL) with a step change from a smooth to a rough surface is analyzed to examine the characteristics of a spatially developing flow. The roughness elements are periodically arranged two-dimensional (2-D) spanwise rods, with the first rod placed 80θin downstream from the inlet, where θin denotes the inlet momentum thickness. Based on an accurate estimation of relevant parameters, clear evidence for mean flow universality is provided when scaled properly, even for the present roughness configuration, which is believed to have one of the strongest impacts on the flow. Compared to previous studies, it is shown that overshooting behavior is present in the first- and second-order statistics and is locally created either within the cavity or at the leading edge of the roughness depending on the type of statistics and the wall-normal measurement location. Inspection of spatial two-point correlations of the streamwise velocity fluctuations shows a continuous increase of spanwise length scales of structures over the rough wall after the step change at a greater growth rate than that over smooth wall TBL flow. This is expected because spanwise energy spectrum shows presence of much energetic wider structures over the rough wall. Full images of the DNS data are presented to describe not only predominance of hairpin vortices but also a possible spanwise scale growth mechanism via merging over the rough wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号