首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
THERMAL POST-BUCKLING OF FUNCTIONALLY GRADED MATERIAL TIMOSHENKO BEAMS   总被引:12,自引:0,他引:12  
Analysis of thermal post-buckling of FGM (Functionally Graded Material) Timoshenko beams subjected to transversely non-uniform temperature rise is presented. By accurately considering the axial extension and transverse shear deformation in the sense of theory of Timoshenko beam, geometrical nonlinear governing equations including seven basic unknown functions for functionally graded beams subjected to mechanical and thermal loads were formulated. In the analysis, it was assumed that the material properties of the beam vary continuously as a power function of the thickness coordinate. By using a shooting method, the obtained nonlinear boundary value problem was numerically solved and thermal buckling and post-buckling response of transversely non-uniformly heated FGM Timoshenko beams with fixed-fixed edges were obtained. Characteristic curves of the buckling deformation of the beam varying with thermal load and the power law index are plotted. The effects of material gradient property on the buckling deformation and critical temperature of beam were discussed in details. The results show that there exists the tension-bend coupling deformation in the uniformly heated beam because of the transversely non-uniform characteristic of materials.  相似文献   

2.
Shear deformable finite beam elements for composite box beams   总被引:3,自引:0,他引:3  
The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study,numerical solutions are presented and compared with the results obtained by other researchers and the detailed threedimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress–strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated.  相似文献   

3.
针对压电/压磁层合纳米梁屈曲、自由振动问题,基于非局部理论与正弦剪切型变形梁理论,建立了力学模型;利用哈密顿原理推导出层合梁运动方程与边界条件;通过数值解法求得层合梁临界屈曲载荷与自由振动频率。对数值结果分析可知:磁电弹夹层对压电/压磁层合纳米梁屈曲和自由振动的影响不能忽略;磁电弹夹层中压电或压磁材料的体积分数和夹层厚度为主要影响因素;分析得到的影响规律可为此类材料在工程中的应用提供理论参考。  相似文献   

4.
含初缺陷裂纹损伤梁的冲击动力屈曲   总被引:1,自引:0,他引:1  
由Hamilton原理导出考虑初始缺陷及横向剪切变形时裂纹梁的动力屈曲控制方程;应用断裂力学中常用的线弹簧模型将裂纹引入到屈曲控制方程中;基于B-R动力屈曲判断准则,采用数值方法求解了受轴向冲击载荷作用时裂纹梁的动力屈曲;对比讨论了不同冲击速度、初始几何缺陷大小以及分布形式等因素对梁冲击动力屈曲的影响。  相似文献   

5.
The static stability of thin-walled composite beams, considering shear deformation and geometrical non-linear coupling, subjected to transverse external force has been investigated in this paper. The theory is formulated in the context of large displacements and rotations, through the adoption of a shear deformable displacement field (accounting for bending and warping shear) considering moderate bending rotations and large twist. This non-linear formulation is used for analyzing the prebuckling and postbuckling behavior of simply supported, cantilever and fixed-end beams subjected to different load condition. Ritz's method is applied in order to discretize the non-linear differential system and the resultant algebraic equations are solved by means of an incremental Newton-Rapshon method. The numerical results show that the beam loses its stability through a stable symmetric bifurcation point and the postbuckling strength is in relation with the buckling load value. Classical predictions of lateral buckling are conservative when the prebuckling displacements are not negligible and the non-linear buckling analysis is required for reliable solutions. The analysis is supplemented by investigating the effects of the variation of load height parameter. In addition, the critical load values and postbuckling response obtained with the present beam model are compared with the results obtained with a shell finite element model (Abaqus).  相似文献   

6.
This work deals with a study of the dynamic and buckling analysis of polymer hybrid composite(PHC) beam. The beam has variable thickness and is reinforced by carbon nanotubes(CNTs) and nanoclay(NC) simultaneously. The governing equations are derived based on the first shear deformation theory(FSDT). A three-phase HalpinTsai approach is used to predict the mechanical properties of the PHC. We focus our attention on the effect of the simultaneous addition of NC and CNT on the vibration and buckling analysis of the PHC beam with variable thickness. Also a comparison study is done on the sensation of three impressive parameters including CNT, NC weight fractions, and the shape factor of fillers on the mechanical properties of PHC beams,as well as fundamental frequencies of free vibrations and critical buckling load. The results show that the increase of shape factor value, NC, and CNT weight fractions leads to considerable reinforcement in mechanical properties as well as increase of the dimensionless fundamental frequency and buckling load. The variation of CNT weight fraction on elastic modulus is more sensitive rather than shear modulus but the effect of NC weight fraction on elastic and shear moduli is fairly the same. The shape factor values more than the medium level do not affect the mechanical properties.  相似文献   

7.
The macro-buckling equations for a sandwich column are developed. A layer-wise Timoshenko beam displacement approximation is assumed. The constitutive relationships and equilibrium equations for the core and face sheets are derived using a consistent hyperelastic neo-Hookean formulation. The derivations in this paper are consistent with that of Haringx’s and Reissner’s proposal for beam actions. The buckling formulation includes the axial deformation prior to buckling and the transverse shear deformation of the core and face sheets. The buckling equations derived agree with the equation of [Allen, H.G., 1969. Analysis and Design of Structural Sandwich Panels, Pergamon, Oxford] for thick faces but are also applicable to any ratio of face sheet to core thickness and material properties. The formulation is compared to experimental results for sandwich columns and shows good comparison except for very short columns. The formulation is also compared to the buckling experimental results for short rubber rods and also compared well. The formulation does not predict a shear buckling mode.  相似文献   

8.
A beam theory for the stability analysis of short beam that includes shear deformation and warping of the cross-section is developed. The warping of the cross-section is taken to be an independent kinematics quantity and corresponding force resultants are defined. For the beam subjected to the external loading only at the ends of the beam, equilibrium equations have been obtained by the principle of virtual work. The variations of lateral displacement, rotational angle of the cross-section and the multiplier of the warping shape along the beam axis are solved in closed form and expressed in terms of deformation quantities at the ends of the beam. Based on this beam theory, the lateral stiffness of the beam sustained an axial compression force and a lateral shear force at one end is explicitly derived, from which the equation of the buckling load is established and the buckling load can be solved. When the effect of cross-section warping is neglected, the derived lateral stiffness and buckling load converge to the solutions of the Haringx theory.  相似文献   

9.
Yeast cells can be regarded as micron-sized and liquid-filled cylindrical shells. Owing to the rigid cell walls, yeast cells can bear compressive forces produced during the biotechnological process chain. However, when the compressive forces applied on the yeast go beyond a critical value, mechanical buckling will occur. Since the buckling of the yeast can change the networks in its cellular control, the experimental research of the buckling of the yeast has received considerable attention recently. In this paper, we apply a viscoelastic shell model to study the buckling of the yeast. Meanwhile, the turgor pressure in the yeast due to the internal liquid is taken into account as well. The governing equations are based on the first-order shear deformation theory. The critical axial compressive force in the phase space is obtained by the Laplace transformation, and the Bellman numerical inversion method is then applied to the analytical result to obtain the corresponding numerical results in the physical phase. The concepts of instantaneous critical buckling force, durable critical buckling force, and delay buckling are set up in this paper. And the effects of the transverse shear deformation and the turgor pressure on the buckling phenomena are also given. The numerical results show that the transverse shearing effect will decrease the instantaneous critical buckling force and the durable critical buckling force, while the turgor pressure will increase both of them.  相似文献   

10.
伪Stroh型公式能够将多场耦合材料的控制方程转化为线性特征系统来求解,从而获得多层结构简支边界条件的精确解.本文利用伪Stroh型公式,研究一维六方准晶层合简支梁的自由振动和屈曲问题,通过传递矩阵法,获得准晶层合梁自由振动固有频率与临界屈曲载荷的精确解.通过与已有梁的剪切变形理论结果比较,验证了本文伪Stroh型公式的正确性和有效性.通过数值算例,分析由两种不同准晶材料组成的三明治层合梁的叠层方式、高跨比、层厚比及层数对梁的固有频率、临界屈曲载荷及其模态的影响规律.结果表明,叠层顺序和梁的高跨比、层厚比对准晶层合梁的自由振动固有频率和临界屈曲载荷有很大影响,可通过调整梁的几何尺寸和叠层顺序得到准晶层合梁的最佳固有频率和临界屈曲载荷.本文给出的精确解可为工程上研究准晶梁的各种数值解法和实验方法提供理论参考.  相似文献   

11.
The size e?ects on the shear buckling behaviors of skew nanoplates made of functionally graded materials(FGMs) are presented. The material properties are supposed to be changed uniformly from the ceramic phase to the metal one along the plate thickness. To estimate the associated e?ective material properties, various homogenization schemes including the Reuss model, the Voigt model, the Mori-Tanaka model, and the Hashin-Shtrikman bound model are used. The nonlocal elasticity theory together with the oblique coordinate system is applied to the higher-order shear deformation plate theory to develop a size-dependent plate model for the shear buckling analysis of FGM skew nanoplates. The Ritz method using Gram-Schmidt shape functions is used to solve the size-dependent problem. It is found that the signi?cance of the nonlocality in the reduction of the shear buckling load of an FGM skew nanoplate increases for a higher value of the material property gradient index. Also, by increasing the skew angle, the critical shear buckling load of an FGM skew nanoplate enhances. This pattern becomes a bit less signi?cant for a higher value of the material property gradient index. Furthermore,among various homogenization models, the Voigt and Reuss models in order estimate the overestimated and underestimated shear buckling loads, and the di?erence between them reduces by increasing the aspect ratio of the skew nanoplate.  相似文献   

12.
The in-plane buckling behavior of funicular arches is investigated numerically in this paper. A finite strain Timoshenko beam-type formulation that incorporates shear deformations is developed for generic funicular arches. The elastic constitutive relationships for the internal beam actions are based on a hyperelastic constitutive model, and the funicular arch equilibrium equations are derived. The problems of a submerged arch under hydrostatic pressure, a parabolic arch under gravity load and a catenary arch loaded by overburden are investigated. Buckling solutions are derived for the parabolic and catenary arch. Subsequent investigation addresses the effects of axial deformation prior to buckling and shear deformation during buckling. An approximate buckling solution is then obtained based on the maximum axial force in the arch. The obtained buckling solutions are compared with the numerical solutions of Dinnik (Stability of arches, 1946) [1] and the finite element package ANSYS. The effects of shear deformation are also evaluated.  相似文献   

13.
A finite element model based on sinusoidal shear deformation theory is developed to study vibration and buckling analysis of composite beams with arbitrary lay-ups. This theory satisfies the zero traction boundary conditions on the top and bottom surfaces of beam without using shear correction factors. Besides, it has strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. By using Hamilton’s principle, governing equations of motion are derived. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results for cross-ply and angle-ply composite beams are obtained as special cases and are compared with other solutions available in the literature. A variety of parametric studies are conducted to demonstrate the effect of fiber orientation and modulus ratio on the natural frequencies, critical buckling loads, and load-frequency curves as well as corresponding mode shapes of composite beams.  相似文献   

14.
粘贴压电层功能梯度材料Timoshenko梁的热过屈曲分析   总被引:1,自引:0,他引:1  
研究了上下表面粘贴压电层的功能梯度材料Timoshenko梁在升温及电场作用下的过屈曲行为。在精确考虑轴线伸长和一阶横向剪切变形的基础上,建立了压电功能梯度Timoshenko层合梁在热-电-机械载荷作用下的几何非线性控制方程。其中,假设功能梯度的材料性质沿厚度方向按照幂函数连续变化,压电层为各向同性均匀材料。采用打靶法数值求解所得强非线性边值问题,获得了在均匀电场和横向非均匀升温场内两端固定Timoshenko梁的静态非线性屈曲和过屈曲数值解。并给出了梁的变形随热、电载荷及材料梯度参数变化的特性曲线。结果表明,通过施加电压在压电层产生拉应力可以有效地提高梁的热屈曲临界载荷,延缓热过屈曲发生。由于材料在横向的非均匀性,即使在均匀升温和均匀电场作用下,也会产生拉-弯耦合效应。但是对于两端固定的压电-功能梯度材料梁,在横向非均匀升温下过屈曲变形仍然是分叉形的。  相似文献   

15.
基于Bernoulli-Euler梁理论,引入物理中面解耦了复合材料结构的面内变形与横向弯曲特性,研究了梯度多孔材料矩形截面梁在热载荷作用下的弯曲及过屈曲力学行为.假设沿梁厚度方向材料的性质是连续变化的,利用能量法推导了矩形截面梁的控制微分方程和边界条件,并用打靶法对无量纲化的控制方程进行数值求解.利用计算得到的结果分析了材料的性质、热载荷、边界条件对矩形截面梁非线性力学行为的影响.结果表明,对称材料模型下,固支梁与简支梁均显示出了典型的分支屈曲行为特征,而其临界屈曲热载荷值均会随着孔隙率系数的增加而单调增加.非对称材料模型下,固支梁仍显示出分支屈曲行为特征,但其临界屈曲热载荷不再随着孔隙率系数的变化而单调变化;而对于两端简支梁,发生了弯曲变形,弯曲挠度随载荷的增大而增大.  相似文献   

16.
The nonlinear thermal buckling of symmetrically laminated cylindrically orthotropic shallow spherical shell under temperature field and uniform pressure including transverse shear is studied. Also the analytic formulas for determining the critical buckling loads under different temperature fields are obtained by using the modified iteration method. The effect of transverse shear deformation and different temperature fields on critical buckling load is discussed.  相似文献   

17.
This paper presents an efficient mathematical model for studying the buckling behavior of geometrically perfect elastic two-layer composite columns with interlayer slip between the layers. The present analytical model is based on the linearized stability theory and is capable of predicting exact critical buckling loads. Based on the parametric analysis, the critical buckling loads are compared to those in the literature. It is shown that the discrepancy between the different methods can be up to approximately 22%. In addition, a combined and an individual effect of pre-buckling shortening and transverse shear deformation on the critical buckling loads is studied in detail. A comprehensive parametric analysis reveals that generally the effect of pre-buckling shortening can be neglected, while, on the other hand, the effect of transverse shear deformation can be significant. This effect can be up to 20% for timber composite columns, 40% for composite columns very flexible in shear (pyrolytic graphite), while for metal composite columns it is insignificant.  相似文献   

18.
The stability problems of clamped skew plates are considered with the inplane stresses represented in terms of oblique components. Deflection is expressed in terms of a double series of beam characteristic functions of clamped-clamped beam. Energy method is used to obtain buckling coefficients under individual loadings and for a few cases of combined loading. Convergence is examined in a few representative cases. For buckling in shear, two critical values exist the magnitude of negative shear being much larger than that of positive shear.  相似文献   

19.
The sinusoidal shear deformation plate theory, presented in the first part of this paper, is used to study the buckling and free vibration of the simply supported functionally graded sandwich plate. Effects of rotatory inertia are considered. The critical buckling load and the vibration natural frequency are investigated. Some available results for sandwich plates non-symmetric about the mid-plane can be retrieved from the present analysis. The influences of the transverse shear deformation, plate aspect ratio, side-to-thickness ratio and volume fraction distributions are studied. In addition, the effect of the core thickness, relative to the total thickness of the plate, on the critical buckling load and the eigenfrequencies is investigated.  相似文献   

20.
The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics(MD) simulations.Our results show that the shear properties(such as shear stress–strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号