首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S.C. Lim 《Annals of Physics》2009,324(8):1676-1964
We consider Casimir force acting on a three-dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy. It is shown that the divergent terms do not contribute to the Casimir force acting on the piston, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a - the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like 1/a4 when a→0+ and decays exponentially when a. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand, passing from massless to massive, we find that the effect of the mass is insignificant when a is small, but the magnitude of the force is decreased for large a in the massive case.  相似文献   

2.
We calculate the Casimir force at a finite cut-off Λ by summing the forces induced by the all fluctuation modes. We show that the Casimir force is independent of the cut-off function in the limit LΛ → ∞. There is a correction in the order of (LΛ)-2, when LΛ is finite and large. This correction becomes remarkable when L is comparable with the microscopic length scale Λ-1. It has been demonstrated that the Casimir force at a finite cut-off should be defined by summing forces of all fluctuation modes, instead of the derivative of Casimir energy with respect to L where an additional derivative of the cut-off function has been introduced.  相似文献   

3.
We consider the Casimir force acting on a d-dimensional rectangular piston due to a massless scalar field with periodic, Dirichlet and Neumann boundary conditions and an electromagnetic field with perfect electric-conductor and perfect magnetic-conductor boundary conditions. The Casimir energy in a rectangular cavity is derived using the cut-off method. It is shown that the divergent part of the Casimir energy does not contribute to the Casimir force acting on the piston, thus renders an unambiguously defined Casimir force acting on the piston. At any temperature, it is found that the Casimir force acting on the piston increases from −∞ to 0 when the separation a between the piston and the opposite wall increases from 0 to ∞. This implies that the Casimir force is always an attractive force pulling the piston towards the closer wall, and the magnitude of the force gets larger as the separation a gets smaller. Explicit exact expressions for the Casimir force for small and large plate separations and for low and high temperatures are computed. The limits of the Casimir force acting on the piston when some pairs of transversal plates are large are also derived. An interesting result regarding the influence of temperature is that in contrast to the conventional result that the leading term of the Casimir force acting on a wall of a rectangular cavity at high temperature is the Stefan–Boltzmann (or black-body radiation) term which is of order T d+1, it is found that the contributions of this term from the two regions separating the piston cancel with each other in the case of piston. The high-temperature leading-order term of the Casimir force acting on the piston is of order T, which shows that the Casimir force has a nontrivial classical →0 limit. Explicit formulas for the classical limit are computed.  相似文献   

4.
We present a solution to the cosmological constant, the zero-point energy, and the quantum gravity problems within a single comprehensive framework. We show that in quantum theories of gravity in which the zero-point energy density of the gravitational field is well-defined, the cosmological constant and zero-point energy problems solve each other by mutual cancellation between the cosmological constant and the matter and gravitational field zero-point energy densities. Because of this cancellation, regulation of the matter field zero-point energy density is not needed, and thus does not cause any trace anomaly to arise. We exhibit our results in two theories of gravity that are well-defined quantum-mechanically. Both of these theories are locally conformal invariant, quantum Einstein gravity in two dimensions and Weyl-tensor-based quantum conformal gravity in four dimensions (a fourth-order derivative quantum theory of the type that Bender and Mannheim have recently shown to be ghost-free and unitary). Central to our approach is the requirement that any and all departures of the geometry from Minkowski are to be brought about by quantum mechanics alone. Consequently, there have to be no fundamental classical fields, and all mass scales have to be generated by dynamical condensates. In such a situation the trace of the matter field energy-momentum tensor is zero, a constraint that obliges its cosmological constant and zero-point contributions to cancel each other identically, no matter how large they might be. In our approach quantization of the gravitational field is caused by its coupling to quantized matter fields, with the gravitational field not needing any independent quantization of its own. With there being no a priori classical curvature, one does not have to make it compatible with quantization.  相似文献   

5.
Analytical properties of the scalar expansion in the cosmic fluid are investigated, especially near the future singularity, when the fluid possesses a constant bulk viscosity ζ. In addition, we assume that there is a Casimir-induced term in the fluid’s energy-momentum tensor, in such a way that the Casimir contributions to the energy density and pressure are both proportional to 1/a 4, a being the scale factor. A series expansion is worked out for the scalar expansion under the condition that the Casimir influence is small. Close to the Big Rip singularity the Casimir term has however to fade away and we obtain the same singular behavior for the scalar expansion, the scale factor, and the energy density, as in the Casimir-free viscous case.  相似文献   

6.
《Annals of Physics》1985,161(1):1-20
The behaviour of two equal mirrors when they are moved under the force of a quantized sealar massless field is studied via a numerical solution of the system of equations. The field force on each surface is deduced using a variational principle. Then it is proved that the mirrors evolve to a final equilibrium state (with constant velocity), if an external energy greater than the initial field energy is given to the system, independently of how the work that produces the energy is done. Furthermore an instantaneous model of particle is proposed and the Casimir Energy for the moving mirrors is calculated. Several features of the system are similar to those of a cosmological model, therefore using a theorem of Parker some cosmological results are extrapolated.  相似文献   

7.
Motivated by analogous applications to sonoluminescence, neutron stars mergers are examined in the context of Schwinger's dynamical Casimir effect. When the dielectric properties of the QED vacuum are altered through the introduction of dense matter, energy shifts in the zero-point fluctuations can appear as photon bursts at gamma-ray frequencies. The amount of radiation depends upon the properties and amount of matter in motion and the suddenness of the transition. It is shown that the dynamical Casimir effect can convert sufficient energy of neutron star mergers into gamma rays. Using information extracted from simulations of matter flow in neutron star mergers by Ruffert and Janka, we estimate that the total Casimir energy released can exceed 10 53 ergs in gamma-ray frequencies. The Casimir energy approach is capable of explaining the most energetic gamma-ray bursts.  相似文献   

8.
We compare quantum hydrodynamics and quantum gravity. They share many common features. In particular, both have quadratic divergences, and both lead to the problem of the vacuum energy, which, in quantum gravity, transforms to the cosmological constant problem. We show that, in quantum liquids, the vacuum energy density is not determined by the quantum zero-point energy of the phonon modes. The energy density of the vacuum is much smaller and is determined by the classical macroscopic parameters of the liquid, including the radius of the liquid droplet. In the same manner, the cosmological constant is not determined by the zero-point energy of quantum fields. It is much smaller and is determined by the classical macroscopic parameters of the Universe dynamics: the Hubble radius, the Newton constant, and the energy density of matter. The same may hold for the Higgs mass problem: the quadratically divergent quantum correction to the Higgs potential mass term is also cancelled by the microscopic (trans-Planckian) degrees of freedom due to the thermodynamic stability of the whole quantum vacuum.  相似文献   

9.
The Casimir effect for massless scalar fields satisfying Dirichlet boundary conditions on the parallel plates in the presence of one fractal extra compactified dimension is analyzed. We obtain the Casimir energy density by means of the regularization of multiple zeta function with one arbitrary exponent. We find a limit on the scale dimension like $\delta>\frac{1}{2}$ to keep the negative sign of the renormalized Casimir energy which is the difference between the regularized energy for two parallel plates and the one with no plates. We derive and calculate the Casimir force relating to the influence from the fractal additional compactified dimension between the parallel plates. The larger scale dimension leads to the greater revision on the original Casimir force. The two kinds of curves of Casimir force in the case of integer-numbered extra compactified dimension or fractal one are not superposition, which means that the Casimir force show whether the dimensionality of additional compactified space is integer or fraction.  相似文献   

10.
The discovery that the expansion of the universe is accelerating in time is a major discovery which still awaits adequate explanation. It is generally agreed that this implies a cosmic repulsion as a result of the existence of a cosmological constant ∧>0. However, estimates of ∧, based on calculations of the zero-point fluctuations of quantum fields are too large by over a hundred orders of magnitude. This result is obtained by summing the zero-point energies up to a large cutoff energy Ω, based on the Planck scale. Since there is no compelling reason for this choice, we argue that since all known quantum electrodynamic (QED) effects involves interaction with matter, a preferred choice should be based on causality and other considerations, leading to a much lower value for ∧.  相似文献   

11.
The first holographic measurements are reported of the force between macroscopic objects mediated by zero-point electromagnetic fluctuations (Casimir force). A holographic interferometer is used to measure mirror oscillations with an amplitude of 1 pm. The objects under study are two thin metal films deposited on dielectric substrates. When one film is periodically oscillated, the first and second harmonics of the Casimir force acting on the other are detected. For the first time, an order-of-magnitude estimate is obtained for the Casimir force by using radiation pressure as a natural reference scale. The discrepancy between calculated and measured values of the Casimir force may be attributed to the small thickness and low conductivity of the metal films.  相似文献   

12.
We calculate the Casimir energy of a massless scalar field confined between two nearby parallel plates formed by ideal uncharged conductors, placed tangentially to the surface of a sphere with mass MM and radius RR. To this end, we take into account a static and spherically symmetric solution of Ho?ava–Lifshitz (HL) gravity, with a cosmological constant term, in lower orders of approximation, considering both weak-field and infrared limits. We show that the Casimir energy, just in the second order weak-field approximation, is modified due to the parameter of the HL gravity as well as to the cosmological constant.  相似文献   

13.
We present a simple and natural way to derive the observed small, positive cosmological constant from the gravitational interaction of condensing fermions. In the Riemann‐Cartan spacetime, torsion gives rise to the axial–axial vector four‐fermion interaction term in the Dirac Lagrangian for spinor fields. We show that this nonlinear term acts like a cosmological constant if these fields have a nonzero vacuum expectation value. For quark fields in QCD, such a torsion‐induced cosmological constant is positive and its energy scale is only about 8 times larger than the observed value. Adding leptons to this picture could lower this scale to the observed value.  相似文献   

14.
A finite vacuum energy density implies the existence of a UV scale for gravitational modes. This gives a phenomenological scale to the dynamical equations governing the cosmological expansion that must satisfy constraints consistent with quantum measurability and spatial flatness. Examination of these constraints for the observed dark energy density establishes a time interval from the transition to the present, suggesting major modifications from the thermal equations of state far from Planck density scales. The assumption that a phase transition initiates the radiation dominated epoch is shown under several scenarios to be able to produce fluctuations to the CMB of the order observed. Quantum measurability constraints (eg. uncertainly relations) define cosmological scales bounded by luminal expansion rates. It is shown that the dark energy can consistently be interpreted as being due to the vacuum energy of collective gravitational modes which manifest as the zero-point motions of coherent Planck scale mass units prior to the UV scale onset of gravitational quantum de-coherence for the cosmology. A cosmological model with multiple scales, one of which replaces an apparent cosmological “constant”, is shown to reproduce standard cosmology during intermediate times, while making the exploration of the early and late time cosmology more accessible. Talk presented at the 2006 biennial conference of the International Association for Relativistic Dynamics, June 12–14, University of Connecticut (Storrs).  相似文献   

15.
《Physics letters. [Part B]》2002,524(1-2):21-25
A semiclassical gravitation model is outlined which makes use of the Casimir energy density of vacuum fluctuations in extra compactified dimensions to produce the present-day cosmological constant as ρ Λ M 8/M P 4, where M P is the Planck scale and M is the weak interaction scale. The model is based on (4+D)-dimensional gravity, with D=2 extra dimensions with radius b(t) curled up at the ADD length scale b 0=M P /M 2∼0.1 mm. Vacuum fluctuations in the compactified space perturb b 0 very slightly, generating a small present-day cosmological constant.The radius of the compactified dimensions is predicted to be b 0k 1/40.09 mm (or equivalently M≈2.4 TeV/k 1/8), where the Casimir energy density is k/b 4.Primordial inflation of our three-dimensional space occurs as in the cosmology of the ADD model as the inflaton b(t), which initially is on the order of 1/M∼10−17 cm, rolls down its potential to b 0.  相似文献   

16.
《Nuclear Physics B》1988,310(1):163-180
We use zeta function techniques to give a finite definition for the Casimir energy of an arbitrary ultrastatic spacetime with or without boundaries. We find that the Casimir energy is intimately related to, but not identical to, the one-loop effective energy. We show that in general the Casimir energy depends on a normalization scale. This phenomenon has relevance to applications of the Casimir energy in bag models of QCD.Within the framework of Kaluza-Klein theories we discuss the one-loop corrections to the induced cosmological and Newton constants in terms of a Casimir like effect. We can calculate the dependence of these constants on the radius of the compact dimensions, without having to resort to detailed calculations.  相似文献   

17.
We examine the gravitational properties of Lamb shift energies. Using available experimental data we show that these energies have a standard gravitational behavior at the level of ∼10−5105. We are motivated by the point of view that Lamb shift energies may be interpreted as a consequence of vacuum fluctuations of the electromagnetic field. If this is the case, our result is a test of the gravitational properties of quantum fluctuations. The result is of interest in relation to the problem of the zero-point energy contribution to the cosmological constant. Indeed, the problem presupposes that the zero-point energy gravitates as all other forms of energy, and this supposition is what we test.  相似文献   

18.
In this paper we examine the Casimir effect for the case of a tachyonic field corresponding to particles with negative four-momentum squared, i.e., m2 < 0. We consider here only the case of the one dimensional, scalar field. In order to describe tachyonic field, we use the absolute synchronization scheme preserving Lorentz invariance. The renormalized vacuum energy is calculated by means of the Abel-Plana formula. Finally, the Casimir energy and Casimir force as the functions of distance are obtained. In order to compare the resulting formula with the standard one, we calculate the Casimir energy and Casimir force for massive, scalar field (m2 > 0).  相似文献   

19.
《Physics letters. A》1996,223(3):163-166
Energy production due to the Casimir effect is considered for the case of a superdense state of matter, which can appear in such cosmological objects as white dwarfs, neutron stars, quasars and so on. The energy output produced by the Casimir effect during the creation of a neutron star turns out to be sufficient to explain nova and supernova explosions. It is shown that the Casimir effect might be a possible source of the huge energy output of quasars.  相似文献   

20.
Supersymmetron     
We consider a supersymmetric model of dark energy coupled to cold dark matter: the supersymmetron. In the absence of cold dark matter, the supersymmetron converges to a supersymmetric minimum with a vanishing cosmological constant. When cold dark matter is present, the supersymmetron evolves to a matter dependent minimum where its energy density does not vanish. In the early Universe until the recent past of the Universe, the energy density of the supersymmetron is negligible compared to the cold dark matter energy density. Away from the supersymmetric minimum, the equation of state of the supersymmetron is constant and negative. When the supersymmetron reaches the neighbourhood of the supersymmetric minimum, its equation of state vanishes rapidly. This leads to an acceleration of the Universe which is transient unless supersymmetry breaking induces a pure cosmological constant and acceleration of the Universe does not end. Moreover, we find that the mass of supersymmetron is always greater than the gravitino mass. As a result, the supersymmetron generates a short ranged fifth force which evades gravitational tests. On the other hand, we find that the supersymmetron may lead to relevant effects on large scale structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号