首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first examples of air‐stable 20π‐electron 5,10,15,20‐tetraaryl‐5,15‐diaza‐5,15‐dihydroporphyrins, their 18π‐electron dications, and the 19π‐electron radical cation were prepared through metal‐templated annulation of nickel(II) bis(5‐arylamino‐3‐chloro‐8‐mesityldipyrrin) complexes followed by oxidation. The neutral 20π‐electron derivatives are antiaromatic and the cationic 18π‐electron derivatives are aromatic in terms of the magnetic criterion of aromaticity. The meso N atoms in these diazaporphyrinoids give rise to characteristic redox and optical properties for the compounds that are not typical of isoelectronic 5,10,15,20‐tetraarylporphyrins.  相似文献   

2.
32π‐antiaromatic expanded isophlorins with a varying number of thiophene and furan rings adopt either planar, ring‐inverted, or twisted conformations depending on the number of furan rings in the macrocycle. However, they exhibit identical reactivity with respect to their oxidation to aromatic 30π‐dicationic species under acidic conditions. These 32π‐antiaromatic macrocycles can also be oxidized with [Et3O+SbCl6?]and NOBF4 to generate dications, thus confirming ring oxidation of macrocycles. Furthermore, they can be reduced back to their parent 32π‐antiaromatic state by triethylamine, Zn, or FeCl2. Single‐crystal X‐ray diffraction analysis confirmed a figure‐eight conformation for a hexafuran system, which opens to a planar structure upon oxidation.  相似文献   

3.
The synthesis of tropanes via a microwave‐assisted, stereoselective 6π‐electrocyclic ring‐opening/ Huisgen [3+2]‐cycloaddition cascade of cyclopropanated pyrrole and furan derivatives with electron‐deficient dipolarophiles is demonstrated. Starting from furans or pyrroles, 8‐aza‐ and 8‐oxabicyclo[3.2.1]octanes are accessible in two steps in dia‐ and enantioselective pure form, being versatile building blocks for the synthesis of pharmaceutically relevant targets, especially for new cocaine analogues bearing various substituents at the C‐6/C‐7 positions of the tropane ring system. Moreover, the 2‐azabicyclo[2.2.2]octane core (isoquinuclidines), being prominently represented in many natural and pharmaceutical products, is accessible via this approach.  相似文献   

4.
The high reactivity of 6π‐electrocyclization in polar solvents has remained one of the important challenges for diarylethenes because of the emergence of a twisted intramolecular charge transfer (TICT) state at the excited state in such polar media, which usually quenches the photocyclization reaction. Herein we report on the preparation and highly efficient photocyclization of 2,3‐diarylbenzo[b]thiophenes with nonsymmetric side‐aryl units in a polar solvent. While the dithiazolylbenzo[b]thiophene showed a suppressed quantum yield of 6π‐electrocyclization of 54 % in methanol, the replacement of a thiazole unit with a thiophene ring led to a photon‐quantitative 6π‐cyclization reaction. The nonsymmetrical modification into the side‐aryl units was considered to enhance the CH/π interactions between side‐aryl units to support a photoreactive conformation in methanol. The stabilization of the photochromic reactive conformation is expected to suppress the formation of the TICT state at the excited state, leading to highly efficient photoreactivity.  相似文献   

5.
7,8‐Dehydropurpurin has attracted much attention owing to the dual 18π‐ and 20π‐electron circuits in its macrocyclic conjugation. The two‐fold Pd‐catalyzed [3+2] annulation of meso‐bromoporphyrin with 1,4‐diphenylbutadiyne furnished 7,8‐dehydropurpurin dimers. The 8a,8a‐linked dimer displays a red‐shifted and enhanced absorption band in the NIR region and a small electrochemical HOMO–LUMO band gap as a consequence of efficient conjugation between the two coplanar 7,8‐dehydropurpurin units. Treatment of this dimer with N‐bromosuccinimide in chloroform and ethanol gave β‐to‐β vinylene‐bridged porphyrin dimers. Owing to the highly constrained conformations, these dimers exhibit perturbed absorption spectra, small Stokes shifts, and high fluorescence quantum yields.  相似文献   

6.
A series of 2‐(1,3‐dioxolan‐2‐yl)phenylallenes that contained a range of substituents (alkyl, aryl, phosphinyl, alkoxycarbonyl, sulfonyl) at the cumulenic C3 position were prepared by using a diverse range of synthetic strategies and converted into their respective 1‐(2‐hydroxy)‐ethoxy‐2‐substituted naphthalenes by smooth thermal activation in toluene solution. Electron‐withdrawing groups at the C3 position accelerated these tandem processes, which consisted of 1) an initial hydride‐like [1,5]‐H shift of the acetalic H atom onto the central cumulene carbon atom; 2) a subsequent 6π‐electrocyclic ring‐closure of the resulting reactive ortho‐xylylenes; and 3) a final aromatization step with concomitant ring‐opening of the 1,3‐dioxolane fragment. If the 1,3‐dioxolane ring of the starting allenes was replaced by a dimethoxymethyl group, the reactions led to mixtures of two disubstituted naphthalenes, which were formed by the migration of either the acetalic H atom or the methoxy group, with the latter migration occurring to a lesser extent. Two of the final 1,2‐disubstituted naphthalenes were converted into their corresponding naphtho‐fused dioxaphosphepine or dioxepinone through an intramolecular transesterification reaction. A DFT computational study accounted for the beneficial influence of the 1,3‐dioxolane fragment on the carbon atom from which the H‐shift took place and also of the electron‐withdrawing substituents on the allene terminus. Remarkably, in the processes that contained a sulfonyl substituent, the conrotatory 6π‐electrocyclization step was of lower activation energy than the alternative disrotatory mode.  相似文献   

7.
The title compound, alternatively called 24‐nor‐5β‐chol‐22‐ene‐3β,7α,12α‐triyl triformate, C26H38O6, has a cis junction between two of the six‐membered rings. All three of the six‐membered rings have chair conformations that are slightly flattened and the five‐membered ring has a 13β,14α‐half‐chair conformation. The 3β, 7α and 12α ring substituents are axial and the 17β group is equatorial. The 3β‐formyl­oxy group is involved in one weak intermol­ecular C—H⋯O bond, which links the mol­ecules into dimers in a head‐to‐head fashion.  相似文献   

8.
Aziridines are highly useful compounds as building blocks for the synthesis of important organic compounds. Amino acid synthesis by aziridine ring opening reaction is a good example to the use of aziridines. Although this reaction is studied by many groups, the synthesis of amino phosphonic acids is less explored. In this study, we have carried out the ring opening reaction of aziridinyl phosphonates with a variety of alcohols including the more functional propargylic and allylic alcohols. These reactions provided functionalized α‐amino‐β‐alkoxyphosphonates in 40–91 % yield.  相似文献   

9.
A Ph3P‐catalyzed cyclization of α‐halogeno ketones 2 with dialkyl acetylenedicarboxylates (=dialkyl but‐2‐ynedioates) 3 produced halogenated α,β‐unsaturated γ‐butyrolactone derivatives 4 in good yields (Scheme 1, Table). The presence of electron‐withdrawing groups such as halogen atoms at the α‐position of the ketones was necessary in this reaction. Cyclization of α‐chloro ketones resulted in higher yields than that of the corresponding α‐bromo ketones. Dihalogeno ketones similarly afforded the expected γ‐butyrolactone derivatives in high yields.  相似文献   

10.
In this contribution, aminocyclobutanes, as well as eight‐membered enamide rings, have been made from N‐vinyl β‐lactams. The eight‐membered products have been formed by a [3,3]‐sigmatropic rearrangement, whereas the aminocyclobutanes have been derived from a domino [3,3]‐rearrangement/6π‐electrocyclisation process. The aminocyclobutanes have been obtained in a highly diastereoselective fashion. The cyclobutane ring system tolerates fusion even if adjacent quaternary centres are present. Systems containing up to four fused rings are readily accessible. The reaction profile has been investigated by using Gaussian 03. This study suggests that two reaction pathways for aminocyclobutane formation are possible. In one pathway the [3,3]‐sigmatropic rearrangement is the rate‐limiting step and in the second pathway the electrocyclisation is rate limiting. Taken together, these reactions should facilitate the construction of fused heterocycles.  相似文献   

11.
蔺楠  王剑波等 《中国化学》2002,20(8):789-794
Electron impact-induced fragmentation mechanism of Trans-α-Aryl-β-enamino esters were investigated using mass-analyzed ion kinetic energy (MIKE) spectrometry and high resolution accurate mass data It was found that the main characteristic fragmentations of compounds studied were:an odd electron ion M^ -EtOH was formed by losing a neutral molecule of ethanol;and the skeletal rearrangements took place;and the ring opening reaction happened after losing a carbon monoxide;and the typical McLafferty rearrangement underwent in ester group.The cycliztion reation caused by losing neutral molecule of TsNH2 due to the ortho-effects of substituted group of gromatic ring was also observed.  相似文献   

12.
A novel strategy to generate functionalized 1‐azatriene intermediates for 6π electrocyclizations was developed by using readily accessible dienyne‐imides and various terminal olefins under PdII catalysis. Taking advantage of the sequential cooperation between preloaded and incorporated functional handles at 1,3‐dien‐5‐yne skeletons, this method not only enables the selective generation of putative 1‐azatrienes but significantly accelerates their thermal 6π‐electrocyclic ring‐closure processes to a series of highly substituted furo[2,3‐b]dihydropyridine derivatives in good yields.  相似文献   

13.
The title compound, C23H32O4, has a 3β configuration, with the epoxy O atom at 16α,17α. Rings A and C have slightly distorted chair conformations. Because of the presence of the C5=C6 double bond, ring B assumes an 8β,9α‐half‐chair conformation slightly distorted towards an 8β‐sofa. Ring D has a conformation close to a 14α‐envelope. The acetoxy and acetyl substituents are twisted with respect to the average molecular plane of the steroid. The conformation of the mol­ecule is compared with that given by a quantum chemistry calculation using the RHF–AM1 (RHF = Roothaan Hartree–Fock) Hamiltonian model. Cohesion of the crystal can be attributed to van der Waals interactions and weak intermolecular C—H?O interactions, which link the mol­ecules head‐to‐tail along [101].  相似文献   

14.
The condensation reaction of α,α′‐dihydroxy‐1,3‐diisopropylbenzene, pyrrole, and an aldehyde leads to the formation of tetramethyl‐m‐benziporphodimethene and outer α‐pyrrolic carbon oxygenated N‐confused tetramethyl‐m‐benziporphodimethenes containing a γ‐lactam ring in the macrocycle. Two isomers with the carbonyl group of the lactam ring either close to (O‐Up) or away from (O‐Down) the neighboring sp3 meso carbon were synthesized and characterized. The single crystal X‐ray diffraction analysis on the regular and γ‐lactam containing tetramethyl‐m‐benziporphodimethenes showed highly distorted macrocycles for all compounds. For O‐Up and O‐Down isomers, dimeric structures, assembling by intermolecular hydrogen‐bonding interactions through lactam rings, were observed in the solid state. Fitting the concentration dependent chemical shifts of the outer NH proton using the non‐linear regression method give a maximum association constant of 108.9 M ?1 for the meso 4‐methylcarboxyphenyl substituted O‐Down isomer. The DFT calculations concluded that the O‐Up isomer is energetically more stable, and the keto form is more stable than the enol form.  相似文献   

15.
The known solid‐state structure (Fig. 1, top) of cyclo(β‐HAla)4 was used to model the structure of the title compound 1 as a prospective somatostatin mimic (Fig. 1, bottom). The synthesis started with the N‐protected natural amino acids Boc‐Phe‐OH, Boc‐Trp‐OH, Boc‐Lys(2‐Cl‐Z)‐OH, and Boc‐Thr(OBn)‐OH, which were homologated to the corresponding β‐amino‐acid derivatives (Scheme 1) and coupled to the β‐tetrapeptide Boc‐β‐HTrp‐β‐HPhe‐β‐HThr(OBn)‐β‐HLys(2‐Cl‐Z)‐OMe ( 16 ); the (N‐Me)‐β‐HThr‐(N‐Me)‐β‐HPhe analog 17 was also prepared. C‐ and N‐terminal deprotection and cyclization through the pentafluorophenyl ester gave the insoluble β‐tetrapeptide with protected Thr and Lys side chains ( 18 ). Solubilization and debenzylation could only be effected in LiCl‐containing THF (ca. 10% yield; with ca. 55% recovery). HPLC Purification provided a sample of the title compound 1 , the structure of which, as determined by NMR‐spectroscopy (Fig. 2, left) was drastically different from the `theoretical' model (Fig. 1). There is a transannular H‐bond dividing the macrocyclic 16‐membered ring, thus forming a ten‐ and a twelve‐membered H‐bonded ring, the former mimicking, or actually being superimposable on, an α‐peptidic so‐called β‐turn. Still, the four side chains occupy equatorial positions on the ring, as planned, albeit with somewhat different geometry as compared to the `original'. The cycloβ‐tetrapeptide has micromolar affinities to the human somatostatin receptors (hsst 1 – 5). Thus, we have demonstrated for the first time that it is possible to mimic a natural peptide hormone with a small β‐peptide. Furthermore, we have discovered a simple way to construct the ubiquitous β‐turn motif with β‐peptides (which are known to be stable to mammalian peptidases).  相似文献   

16.
The structure of the title compound, tetrakis(2‐methyl‐2‐phenyl­propyl)­stannane, (PhCMe2CH2)4Sn, has been determined at 293 K by Reuter & Pawlak (1998). This present determination was carried out at 150 K and as a result gives cell, coordinate and displacement parameters with much reduced s.u.'s. As is pointed out in the the above paper, the bonds and angles are similar to those in related Sn compounds although it is worth emphasizing that there are no intra‐ or intermolecular ring–ring interactions but that there are a numberof C—H...Cg(π‐ring) interactions at the 3.0 Å level.  相似文献   

17.
NH2SO3H–SiO2/water as a novel catalytic system was used for the synthesis of (α,β‐unsaturated) β‐amino ketones via aza‐Michael reaction at reflux conditions. The methodology was of general applicability and the catalyst exhibited activity up to five cycles. The catalyst was characterized for the first time using FT‐IR, X‐ray diffraction and scanning electron microscopic–energy dispersion analytical X‐ray. The stability of the catalyst was evaluated by differential scanning calorimetry and TGA/differential thermal analysis. High efficiency of the catalyst along with its recycling ability and the rather low loading demonstrated in reactions are the merits of the presented protocol. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
以5-雄烯二醇为原料,用微生物转化的方法合成了两个重要的神经甾体5-雄烯-3β, 7α, 17β-三醇和5-雄烯-3β, 7β, 17β-三醇。所用菌种总枝毛霉为我们自己筛选,并首次应用于5-雄烯-3β, 7α, 17β-三醇和5-雄烯-3β, 7β, 17β-三醇的合成中。  相似文献   

19.
Knowledge of the fragmentation mechanisms of lactones and their behaviour under electrospray ionization (ESI) conditions can be extended to larger and more complex natural products that contain an α,β‐unsaturated γ‐lactone moiety in their structure. Moreover, little is known about the gas‐phase behaviour of α,β‐unsaturated γ‐lactones linked or fused to sugars. Therefore, five α,β‐unsaturated γ‐lactones (butenolides) fused to a pyranose ring, recently synthesized compounds with potential relevance regarding their biological properties, were investigated using ESI‐MS and ESI‐MS/MS in both positive and negative ion modes. Their fragmentation mechanisms and product ion structures were compared. It was observed that two isomers could be unambiguously distinguished in the negative ion mode by the fragmentation pathways of their deprotonated molecules as well as in the positive ion mode by the fragmentation pathways of either the protonated or the sodiated molecule. Fragmentation mechanisms are proposed taking into account the MS/MS data and semi‐empirical calculations using the PM6 Hamiltonean. The semi‐empirical calculations were also very useful in determining the most probable protonation and cationization sites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
An enantioselective aldehyde α‐alkylation/semipinacol rearrangement was achieved through organo‐SOMO catalysis. The catalytically generated enamine radical cation serves as a carbon radical electrophile that can stereoselectively add to the alkene of an allylic alcohol and initiate ensuing ring‐expansion of cyclopropanol or cyclobutanol. This tandem reaction enables the production of a wide range of nonracemic functionalizable α‐quaternary‐δ‐carbonyl cycloketones in high yields and excellent enantioselectivity from simple aldehydes and allylic alcohols. As a key step, the intramolecular reaction was also successfully applied in the asymmetric total synthesis of (+)‐cerapicol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号