首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A flow procedure for the metalation of functionalized heterocycles (pyridines, pyrimidines, thiophenes, and thiazoles) and various acrylates using the strong, non‐nucleophilic base TMPMgCl?LiCl is reported. The flow conditions allow the magnesiations to be performed under more convenient conditions than the comparable batch reactions, which often require cryogenic temperatures and long reaction times. Moreover, the flow reactions are directly scalable without further optimization. Metalation under flow conditions also allows magnesiations that did not produce the desired products under batch conditions, such as the magnesiation of sensitive acrylic derivatives. The magnesiated species are subsequently quenched with various electrophiles, thereby introducing a broad range of functionalities.  相似文献   

2.
We report the preparation of lithium‐salt‐free KDA (potassium diisopropylamide; 0.6 m in hexane) complexed with TMEDA (N,N,N′,N′‐tetramethylethylenediamine) and its use for the flow‐metalation of (hetero)arenes between ?78 °C and 25 °C with reaction times between 0.2 s and 24 s and a combined flow rate of 10 mL min?1 using a commercial flow setup. The resulting potassium organometallics react instantaneously with various electrophiles, such as ketones, aldehydes, alkyl and allylic halides, disulfides, Weinreb amides, and Me3SiCl, affording functionalized (hetero)arenes in high yields. This flow procedure is successfully extended to the lateral metalation of methyl‐substituted arenes and heteroaromatics, resulting in the formation of various benzylic potassium organometallics. A metalation scale‐up was possible without further optimization.  相似文献   

3.
Transfer hydrogenation reactions are of great interest to reduce diverse molecules under mild reaction conditions. To date, this type of reaction has only been successfully applied to alkenes, alkynes and polarized unsaturated compounds such as ketones, imines, pyridines, etc. The reduction of benzene derivatives by transfer hydrogenation has never been described, which is likely due to the high energy barrier required to dearomatize these compounds. In this context, we have developed a catalytic transfer hydrogenation reaction for the reduction of benzene derivatives and heteroarenes to form complex 3-dimensional scaffolds bearing various functional groups at room temperature without needing compressed hydrogen gas.  相似文献   

4.
5.
The addition of TMPLi to a mixture of an aromatic or heteroaromatic substrate with a metal salt such as MgCl2, ZnCl2, or CuCN at ?78 °C first leads to lithiation of the arene followed by transmetalation with the metal salt to afford functionalized organometallic compounds of Mg, Zn, or Cu. This in situ trapping method allows an expedited metalation (?78 °C, 5 min) of a range of sensitive pyridines (bearing a nitro, ester, or cyano group) and allows the preparation of kinetic regioisomers of functionalized aromatic compounds or heterocycles not otherwise available by standard metalating agents, such as TMPMgCl?LiCl or TMPZnCl?LiCl.  相似文献   

6.
Skeletal editing involves making specific point-changes to the core of a molecule through the selective insertion, deletion or exchange of atoms. It thus represents a potentially powerful strategy for the step-economic modification of complex substrates and is a perfect complement to methods such as C−H functionalization that target the molecular periphery. Given their ubiquity in biologically active compounds, the ability to perform skeletal editing on – and therefore interconvert between – aromatic heterocycles is especially valuable. This review summarizes both recent and key historical examples of skeletal editing as applied to interconversion of aromatic rings; we anticipate that it will serve to highlight not only the innovative and enabling nature of current skeletal editing methods, but also the tremendous opportunities that still exist in the field.  相似文献   

7.
An electrochemical bromination of thiophenes from ammonium bromide is developed both in batch and continuous-flow conditions. Substituted thiophenes possessing 2-hydrogens selectively afford a series of 2-bromothiophenes while 2-substituted benzothiophenes generate 3-bromobenzo[b]thiophenes. Based on the cyclic voltammetric studies and literature, a bromine cation involved mechanism was proposed.  相似文献   

8.
The intermolecular C?H trifluoromethoxylation of arenes remains a long‐standing and unsolved problem in organic synthesis. Herein, we report the first catalytic protocol employing a novel trifluoromethoxylating reagent and redox‐active catalysts for the direct (hetero)aryl C?H trifluoromethoxylation. Our approach is operationally simple, proceeds at room temperature, uses easy‐to‐handle reagents, requires only 0.03 mol % of redox‐active catalysts, does not need specialized reaction apparatus, and tolerates a wide variety of functional groups and complex structures such as sugars and natural product derivatives. Importantly, both ground‐state and photoexcited redox‐active catalysts are effective. Detailed computational and experimental studies suggest a unique reaction pathway where photoexcitation of the trifluoromethoxylating reagent releases the OCF3 radical that is trapped by (hetero)arenes. The resulting cyclohexadienyl radicals are oxidized by redox‐active catalysts and deprotonated to form the desired products of trifluoromethoxylation.  相似文献   

9.
The Grignard reagent, iPrMgCl and its lithium chloride-enhanced ‘turbo’ derivative iPrMgCl⋅LiCl have been employed to investigate the single iodo/magnesium exchange reactions of the trisubstituted arenes, 2,5-diiodo-N,N-diisopropylbenzamide 1 , 1,4-diiodo-2-methoxybenzene 2 , and 1,4-diiodo-2-(trifluoromethyl)benzene 3 . These three arenes themselves were initially prepared by a double ortho-, meta′-deprotonation of N,N-diisopropylbenzamide, anisole and (trifluoromethyl)benzene, respectively, using the sodium magnesiate reagent [Na4Mg2(TMP)6(nBu)2] (where TMP is 2,2,6,6-tetramethylpiperidide), and subsequent electrophilic quenching with iodine/THF solution. Thus, by following a combined deprotonation and magnesium/halogen exchange strategy, the simple monosubstituted arenes can be converted to trisubstituted diiodoarenes, which can ultimately be transformed into the corresponding mono-magnesiated arenes, in THF at −40 °C, within seconds in good yields. The other functional group (OMe, NiPr2 or CF3 respectively) present on the di-iodoarenes helps direct the exchange reaction to the ortho position, whereas subsequent addition of different electrophiles permits the preparation of hetero-poly-functional-arenes, with three different substituents in their structure. Intriguingly, if water is used as the electrophile, a new and facile route to prepare meta-substituted arenes, which cannot be easily obtained by conventional processes, is forthcoming. In contrast to directed ortho-metalation (DoM) chemistry, this reaction sequence can be thought of as InDirect meta-Metalation (IDmM). The scope of the chemistry has been tested further by exposing the initial unreacted iodo-functionality at the meta-position to a second Mg/I-exchange reaction and subsequent functionalization.  相似文献   

10.
曾祥华  余焓  余菁  张俊勇  谢景力 《化学通报》2014,77(10):942-950
"连续流动化学"方法是无机制备科学中一种极具发展潜力的科学手段。作为一种已发展成熟的过程强化技术,与溶液合成、水热(溶剂热、离子热)等合成方法相比,"连续流动化学"方法具有可精确调控反应速度、缩短反应周期、优化并放大化学反应、提高产率的独特优势。本文总结了当前连续流动化学在无机物的分离和提取,纳米粒子、多金属氧酸盐等无机材料合成等领域的应用,分析了其在无机制备科学中存在的问题并展望了其的发展趋势。  相似文献   

11.
12.
13.
The rapid development of continuous flow processes is driving innovations in various chemical syntheses and industrial productions. Immobilizing catalysts in flow reactors allows transformations with high-efficiency and excludes the subsequent separation procedures. This concept outlines the approaches to incorporate catalysts within flow reactors, with particular focus on the application of additional supports including inorganic materials like silica, zeolite and reduced graphene oxide, polymeric materials like polymer packings, monoliths, cross-linked gels and polymer brushes, and other materials for specific conditions like transparent glass fibers and glass beads. Furthermore, advanced methods to develop ordered micro-/nanoarrays from internal walls of flow channels for immobilization of catalysts as well as application of innovative vortex fluidic devices are discussed to inspire new designs of supports for novel fluidic reactors with broad applications.  相似文献   

14.
The synthetic utilities of the diazo and diazonium groups are matched only by their reputation for explosive decomposition. Continuous processing technology offers new opportunities to make and use these versatile intermediates at a range of scales with improved safety over traditional batch processes. In this minireview, the state of the art in the continuous flow processing of reactive diazo and diazonium species is discussed.  相似文献   

15.
The growing interest in novel sulfur pharmacophores led to recent advances in the synthesis of some S(IV) and S(VI) motifs. However, preparation and isolation of uncommon primary sulfinamidines, the aza-analogues of sulfinamides, is highly desirable. Here we report a multistep continuous flow synthesis of poorly explored NH2-sulfinamidines by nucleophilic attack of organometallic reagents to in situ prepared N-(trimethylsilyl)-N-trityl-λ4-sulfanediimine (Tr−N=S=N−TMS). The transformation can additionally be realized under mild conditions, at room temperature, via a highly chemoselective halogen-lithium exchange of aryl bromides and iodides with n-butyllithium. Moreover, the synthetic potential of the methodology was assessed by exploring further manipulations of the products and accessing novel S(IV) analogues of celecoxib, tasisulam, and relevant sulfinimidoylureas.  相似文献   

16.
Microreactor technology and continuous flow processing in general are key features in making organic synthesis both more economical and environmentally friendly. When preformed under a high‐temperature/pressure process intensification regime many transformations originally not considered suitable for flow synthesis owing to long reaction times can be converted into high‐speed flow chemistry protocols that can operate at production‐scale quantities. This Focus Review summarizes the state of the art in high‐temperature/pressure microreactor technology and provides a survey of successful applications of this technique from the recent synthetic organic chemistry literature.  相似文献   

17.
Thin film flow chemistry using a vortex fluidic device (VFD) is effective in the scalable acylation of amines under shear, with the yields of the amides dramatically enhanced relative to traditional batch techniques. The optimized monophasic flow conditions are effective in ≤80 seconds at room temperature, enabling access to structurally diverse amides, functionalized amino acids and substituted ureas on multigram scales. Amide synthesis under flow was also extended to a total synthesis of local anesthetic lidocaine, with sequential reactions carried out in two serially linked VFD units. The synthesis could also be executed in a single VFD, in which the tandem reactions involve reagent delivery at different positions along the rapidly rotating tube with in situ solvent replacement, as a molecular assembly line process. This further highlights the versatility of the VFD in organic synthesis, as does the finding of a remarkably efficient debenzylation of p‐methoxybenzyl amines.  相似文献   

18.
The direct reduction of arenes and heteroarenes by visible‐light irradiation remains challenging, as the energy of a single photon is not sufficient for breaking aromatic stabilization. Shown herein is that the energy accumulation of two visible‐light photons allows the dearomatization of arenes and heteroarenes. Mechanistic investigations confirm that the combination of energy‐transfer and electron‐transfer processes generates an arene radical anion, which is subsequently trapped by hydrogen‐atom transfer and finally protonated to form the dearomatized product. The photoreduction converts planar aromatic feedstock compounds into molecular skeletons that are of use in organic synthesis.  相似文献   

19.
Cyclopentanoids are omnipresent in natural products and pharmaceutically relevant compounds. Among them, cyclopenta‐fused arenes and heteroarenes possess impressive biological properties and play significant role in materials science. Consequently, several notable methods have been developed for their synthesis over the years. In this review, we mainly described metal‐free and organocatalytic approaches that led to the construction of pentannulated arenes and heteroarenes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号