首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
With the aim of exploiting the use of organometallic species for the efficient modification of proteins through C-atom transfer, the gold-mediated cysteine arylation through a reductive elimination process occurring from the reaction of cyclometalated AuIII C^N complexes with a zinc finger peptide (Cys2His2 type) is here reported. Among the four selected AuIII cyclometalated compounds, the [Au(CCON)Cl2] complex featuring the 2-benzoylpyridine (CCON) scaffold was identified as the most prone to reductive elimination and Cys arylation in buffered aqueous solution (pH 7.4) at 37 °C by high-resolution LC electrospray ionization mass spectrometry. DFT and quantum mechanics/molecular mechanics (QM/MM) studies permitted to propose a mechanism for the title reaction that is in line with the experimental results. Overall, the results provide new insights into the reactivity of cytotoxic organogold compounds with biologically important zinc finger domains and identify initial structure–activity relationships to enable AuIII-catalyzed reductive elimination in aqueous media.  相似文献   

2.
The title compound, [Li(C12H21NSi)(C6H16N2)], is an intermediate in the synthesis of the corresponding organometallic compounds. The mol­ecule has an unusual C—Si—N—Li four‐membered heterocycle which adopts a folded conformation, with the coordination around the Li, N, C and Si atoms being distorted tetrahedral. Its structure is strongly supported by 1H NMR, 13C NMR and 13C–1H correlation spectra. The compound has potential for application in the synthesis of other novel organometallic compounds.  相似文献   

3.
Supported bilayer lipid membrane (s‐BLM) containing one‐dimensional compound 1, TCNQ‐based (TCNQ=7,7,8,8‐tetracyanoquinodimethane) organometallic compound {(Cu2(μ‐Cl)(μ‐dppm)2)(μ2‐TCNQ)}, was prepared and characterized on the self‐assembled monolayer (SAM) of 1‐octadecylmercaptan (C18H37SH) deposited onto Au electrode. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results showed that the compound 1, dotted inside s‐BLM, can act as mediator for electron transfer across the membrane. Two redox peaks and the charge‐transfer resistance of 400 kΩ were observed for compound 1 inside s‐BLM. The mechanism of the electron transfer across s‐BLM by TCNQ is by electron hopping while TCNQ‐based organometallic compound is by conducting. Further conclusion drawn from this finding is that the TCNQ‐based organometallic compound embedded inside s‐BLM exhibits excellent electron transfer ability than that of free TCNQ. This opens a new path for the development of s‐BLM sensor and/or biosensor by incorporation with TCNQ‐based organometallic compounds.  相似文献   

4.
A form independent activation of zinc, concomitant generation of organozinc species and engagement in a Negishi cross‐coupling reaction via mechanochemical methods is reported. The reported method exhibits a broad substrate scope for both C(sp3)–C(sp2) and C(sp2)–C(sp2) couplings and is tolerant to many important functional groups. The method may offer broad reaching opportunities for the in situ generation organometallic compounds from base metals and their concomitant engagement in synthetic reactions via mechanochemical methods.  相似文献   

5.
New multi‐modular donor–acceptor conjugates featuring zinc porphyrin (ZnP), catechol‐chelated boron dipyrrin (BDP), triphenylamine (TPA) and fullerene (C60), or naphthalenediimide (NDI) have been newly designed and synthesized as photosynthetic antenna and reaction‐center mimics. The X‐ray structure of triphenylamine‐BDP is also reported. The wide‐band capturing polyad revealed ultrafast energy‐transfer (kENT=1.0×1012 s?1) from the singlet excited BDP to the covalently linked ZnP owing to close proximity and favorable orientation of the entities. Introducing either fullerene or naphthalenediimide electron acceptors to the TPA‐BDP‐ZnP triad through metal–ligand axial coordination resulted in electron donor–acceptor polyads whose structures were revealed by spectroscopic, electrochemical and computational studies. Excitation of the electron donor, zinc porphyrin resulted in rapid electron‐transfer to coordinated fullerene or naphthalenediimide yielding charge separated ion‐pair species. The measured electron transfer rate constants from femtosecond transient spectral technique in non‐polar toluene were in the range of 5.0×109–3.5×1010 s?1. Stabilization of the charge‐separated state in these multi‐modular donor–acceptor polyads is also observed to certain level.  相似文献   

6.
Two triphenylene‐based tris(N‐heterocyclic carbene)–gold–acetylide main‐chain organometallic microporous polymers (MOMPs) were obtained and fully characterized. Both materials show spherical shapes, and their size is highly dependent on the type of acetylene used in the synthetic protocol. The new solids were tested in the catalytic reduction of nitroarenes with NaBH4 and in the three‐component Strecker reaction for the synthesis of α‐aminonitriles, and showed high activity in both processes. Whereas the activity of the solids in the reduction of nitroarenes may be attributed to the formation of Au nanoparticles due to the use of NaBH4 as reducing agent, the activity in the Strecker reaction may originate from the Lewis acidic activation of the ketone or imine on coordination to Au.  相似文献   

7.
8.
An easy way of producing three‐dimensional metal–organic coordination polymers involving zinc(II) benzene‐dicarboxylates is reported. The reaction of zinc oxide with benzene dicarboxylic acids in water yielded the expected hydrated zinc dicarboxylates. These zinc compounds were then suspended in dimethylsulfoxide and heated to above 100 °C for a couple of hours; the solutions were allowed after filtration to cool down to eventually deliver crystalline compounds displaying complex zeotype structures. The crystal structure of the title compound, [Zn2(ip)4(DMSO)2(H2O)·3 DMSO]n (ipH2 = isophthalic acid = 1,3‐benzenedicarboxylic acid, DMSO = dimethylsulfoxide), is reported for the first time and shows a three‐dimensional network where octahedrally and tetrahedrally coordinated zinc atoms (present in a 1:1 ratio) are linked by bridging isophthalate ligands. The complex coordination network exhibits a remarkable channel structure along the z‐axis. The related zinc terephthalate–DMSO complex was similarly prepared and the crystal structure determination revealed an already documented zeotypic structure: [{Zn4(OH)2(tp)3(DMSO)4} 2H2O]n (tpH2 = terephthalic acid = 1,4‐benzenedicarboxylic acid). Weak interactions as well as hydrogen bonds involving water molecules and carboxy groups play a major role in the formation of these complex three‐dimensional networks. In comparison, the zinc 1,2‐benzene‐dicarboxylate–DMSO complex could not be isolated, even under more drastic conditions. The higher symmetry of the coordination network found in the zinc terephthalate–DMSO complexes was incidentally corroborated by 13C CP/MAS spectroscopy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Green conversion of three‐dimensional organometallic [Ag26‐tp)]n ( 1 ) coordination polymer (CP) nanosheets, prepared by sonochemical procedure, to three‐dimensional organometallic [Ag24‐tp)(apy)2]n ( 2 ) (where H2tp = terephthalic acid and apy = 2‐aminopyridine) CP nanoparticles has been observed upon solid‐state mechanochemical reaction of compound 1 with 2‐aminopyridine. The AgO3 Ag ···C6 coordination sphere of silver ion in 1 changed to NO2 Ag ···C coordination sphere in 2 during this mechanochemical addition. These samples were characterized by infrared spectroscopy, thermogravimetric and differential thermal analyses, X‐ray powder diffraction and scanning electron microscopy.  相似文献   

10.
The title compound, [Mg2(C12H14O4)2]n, is the first example of an s‐block metal adamantanedicarboxylate coordination polymer. The asymmetric unit comprises two crystallographically unique MgII centers and two adamantane‐1,3‐dicarboxylate ligands. The compound is constructed from a combination of chains of corner‐sharing magnesium‐centered polyhedra, parallel to the a axis, connected by organic linkers to form a layered polymer. The two MgII centers are present in distorted tetrahedral and octahedral coordination environments derived from carboxylate O atoms. Tetrahedrally coordinated MgII centers have been reported in organometallic compounds, but this is the first time that such coordination has been observed in a magnesium‐based coordination polymer. The bond valance sums of the two MgII centers are 2.05 and 2.11 valence units, matching well with the expected value of 2.  相似文献   

11.
In the organometallic silver(I) supramolecular complex poly[[silver(I)‐μ3‐3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile] perchlorate methanol solvate], {[Ag(C18H11N3S)](ClO4)·CH3OH}n, there is only one type of AgI center, which lies in an {AgN2Sπ} coordination environment. Two unsymmetric multidentate 3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile (L) ligands link two AgI atoms through π–AgI interactions into an organometallic box‐like unit, from which two 3‐cyanobenzoyl arms stretch out in opposite directions and bind two AgI atoms from neighboring box‐like building blocks. This results in a novel two‐dimensional network extending in the crystallographic bc plane. These two‐dimensional sheets stack together along the crystallographic a axis to generate parallelogram‐like channels. The methanol solvent molecules and the perchlorate counter‐ions are located in the channels, where they are fixed by intermolecular hydrogen‐bonding interactions. This architecture may provide opportunities for host–guest chemistry, such as guest molecule loss and absorption or ion exchange. The new fulvene‐type multidentate ligand L is a good candidate for the preparation of Cp–AgI‐containing (Cp is cyclopentadienyl) organometallic coordination polymers or supramolecular complexes.  相似文献   

12.
Two coordination polymers based on 1, 6‐bis(2‐methyl‐imidazole‐1‐yl)‐hexane (bimh), namely {[Zn3(BTC)2(bimh)] · (bimh)}n ( 1 ) and {[Zn(IPA)(bimh)] · (CH3CH2OH)0.5}n ( 2 ) (H3BTC = trimesic acid, H2IPA = isophthalic acid), were synthesized through hydrothermal reactions. In compound 1 , the zinc(II) ions are bridged by BTC3– ligands to form an undulating infinite two‐dimensional (2D) polymeric network. The 3D networks of 1 show a twofold interpenetrating net. In compound 2 , zinc(II) ions are bridged by IPA2– ligands to form one‐dimensional (1D) helical structures. The 2D structures of 2 are further assembled into 3D networks through aromatic π–π stacking interactions. Both compounds exhibit strong photoluminescence at room temperature and may be good candidates for potential luminescence materials.  相似文献   

13.
In the title compound, [Pt(C18H15N2)Cl], the PtII centre adopts a distorted square‐planar coordination geometry due to the pincer‐type monoanionic N–C–N tridentate ligand. The planar complexes stack viaπ–π interactions to form two‐dimensional accumulated sheets. This packing pattern is in contrast to that in related pincer‐type N–C–N complexes, which exhibit a one‐dimensional columnar stacking.  相似文献   

14.
Zinc thiocyanate complexes have been found to be biologically active compounds. Zinc is also an essential element for the normal function of most organisms and is the main constituent in a number of metalloenzyme proteins. Pyrimidine and aminopyrimidine derivatives are biologically very important as they are components of nucleic acids. Thiocyanate ions can bridge metal ions by employing both their N and S atoms for coordination. They can play an important role in assembling different coordination structures and yield an interesting variety of one‐, two‐ and three‐dimensional polymeric metal–thiocyanate supramolecular frameworks. The structure of a new zinc thiocyanate–aminopyrimidine organic–inorganic compound, (C6H9ClN3)2[Zn(NCS)4]·2C6H8ClN3·2H2O, is reported. The asymmetric unit consist of half a tetrathiocyanatozinc(II) dianion, an uncoordinated 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidinium cation, a 4‐amino‐5‐chloro‐2,6‐dimethylpyrimidine molecule and a water molecule. The ZnII atom adopts a distorted tetrahedral coordination geometry and is coordinated by four N atoms from the thiocyanate anions. The ZnII atom is located on a special position (twofold axis of symmetry). The pyrimidinium cation and the pyrimidine molecule are not coordinated to the ZnII atom, but are hydrogen bonded to the uncoordinated water molecules and the metal‐coordinated thiocyanate ligands. The pyrimidine molecules and pyrimidinium cations also form base‐pair‐like structures with an R22(8) ring motif via N—H…N hydrogen bonds. The crystal structure is further stabilized by intermolecular N—H…O, O—H…S, N—H…S and O—H…N hydrogen bonds, by intramolecular N—H…Cl and C—H…Cl hydrogen bonds, and also by π–π stacking interactions.  相似文献   

15.
Hybridization of organometallic complexes with graphene‐based materials can give rise to enhanced catalytic performance. Understanding the chemical structures within hybrid materials is of primary importance. In this work, archetypical hybrid materials are synthesized by the reaction of an organometallic complex, [CoII(acac)2] (acac=acetylacetonate), with N‐doped graphene‐based materials at room temperature. Experimental characterization of the hybrid materials and theoretical calculations reveal that the organometallic cobalt‐containing species is coordinated to heterocyclic groups in N‐doped graphene as well as to its parental acac ligands. The hybrid material shows high electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media, and superior durability and methanol tolerance to a Pt/C catalyst. Based on the chemical structures and ORR experiments, the catalytically active species is identified as a Co‐O4‐N structure.  相似文献   

16.
The 1H{15N} NMR spectrum of 5,7‐diphenyl‐1,2,4‐triazolo[1,5‐a]‐pyrimidine ( 3 ) was measured by GHMQC, unambiguously assigned and compared with the spectra of 1,2,4‐triazolo[1,5‐a]pyrimidine ( 1 ) and 5,7‐dimethyl‐1,2,4‐triazolo[1,5‐a]pyrimidine ( 2 ). A series of Au(III) chloride complexes of general formula AuLCl3, where L = 1 , 2 , 3 , was synthesized and studied by 1HH{15N} GHMQC and 1H{13C} GHMBC. Low‐frequency shifts of 72–74 ppm (15N) and 5–6 ppm (13C) were observed upon complexation by Au(III) ions for the coordination site N‐3 and adjacent C‐2, C‐3a atoms, respectively. The 13C signals of C‐5, C‐6, C‐7 and the 1H resonances of H‐2, H‐6 were shifted to higher frequency. Comparison with analogous Pd(II), Pt(II) and Pt(IV) complexes revealed that in the case of Au(III) coordination the 15N shifts were relatively smaller, whereas those for 13C and 1H were larger. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The tuning of metal–metal interactions in multinuclear assemblies is a challenge. Selective P coordination of a redox‐active PNO ligand to AuI followed by homoleptic metalation of the NO pocket with NiII affords a unique trinuclear Au–Ni–Au complex. This species features two antiferromagnetically coupled ligand‐centered radicals and a double intramolecular d8–d10 interaction, as supported by spectroscopic, single‐crystal X‐ray diffraction, and computational data. A corresponding cationic dinuclear Au–Ni analogue with a stronger d8–d10 interaction is also reported. Although both heterobimetallic structures display rich electrochemistry, only the trinuclear Au–Ni–Au complex facilitates electrocatalytic C?X bond activation of alkyl halides in its doubly reduced state. Hence, the presence of a redox‐active ligand framework, an available coordination site at gold, and the nature of the nickel–gold interaction appear to be essential for this reactivity.  相似文献   

18.
1,2-(1-Acridin-10'-yl-2-aza-2-methylprop-1,3-ylene)fullerene was synthesized firstly and characterized by UV-Vis, ^1H NMR, ^13C NMR and electrospray ionization mass spectroscopy, which is capable of forming a stable complex with zinc tetraphenylporphyrin via the axial ligation. The steady state fluorescence studies show efficient quenching of the zinc tetraphenylporphyrin emission upon axial coordination of acridine attached to C60.  相似文献   

19.
Two new copper(I) olefin complexes, [Cu6Cl6(MTrVS)2] ( 1 ) and [Cu2Cl2(DMVSP)2] ( 2 ), of tridentate bridging methyltrivinylsilane (MTrVS) and bidentate chelating 2‐[dimethyl(vinyl)silyl]pyridine (DMVSP) have been synthesized and characterized by single‐crystal X‐ray structure analysis, IR and 1H NMR spectroscopy. It has been shown that using the alkenylsilanes with required electronic properties, molecular symmetry and conformational flexibility, it is possible to control the formation of optimal copper(I) halide oligomers. The obtained results, together with relevant literature data, also illustrate how the coordination mode of vinylsilanes is related to Cu–(C=C) bond strengthening and, consequently, to stability of the organometallic compounds. In particular, we suggest that, together with Cu–Cα distance shortening accompanied by a segmentation of π‐conjugated chelate ring, complex shows an increased lability to form probably an alkenylcopper intermediate in the homocoupling reaction of alkenyl(2‐pyridyl)silanes. At the same time, no appreciable reduction of thermal stability of π‐conjugated chelate complex 2 with respect to bridged compound 1 emerges.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号