首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous batteries using inorganic compounds as electrode materials are considered a promising solution for grid-scale energy storage, while wide application is limited by the short life and/or high cost of electrodes. Organics with carbonyl groups are being investigated as the alternative to inorganic electrode materials because they offer the advantages of tunable structures, renewability, and they are environmentally benign. Furthermore, the wide internal space of such organic materials enables flexible storage of various charged ions (for example, H+, Li+, Na+, K+, Zn2+, Mg2+, and Ca2+, and so on). We offer a comprehensive overview of the progress of organics containing carbonyls for energy storage and conversion in aqueous electrolytes, including applications in aqueous batteries as solid-state electrodes, in flow batteries as soluble redox species, and in water electrolysis as redox buffer electrodes. The advantages of organic electrodes are summarized, with a discussion of the challenges remaining for their practical application.  相似文献   

2.
Porous polymer networks (PPNs) are attractive materials for capacitive energy storage because they offer high surface areas for increased double‐layer capacitance, open structures for rapid ion transport, and redox‐active moieties that enable faradaic (pseudocapacitive) energy storage. Here we demonstrate a new attractive feature of PPNs—the ability of their reduced forms (radical anions and dianions) to interact with small radii cations through synergistic interactions arising from densely packed redox‐active groups, only when prepared as thin films. When naphthalene diimides (NDIs) are incorporated into PPN films, the carbonyl groups of adjacent, electrochemically generated, NDI radical anions and dianions bind strongly to K+, Li+, and Mg2+, shifting the formal potentials of NDI’s second reduction by 120 and 460 mV for K+ and Li+‐based electrolytes, respectively. In the case of Mg2+, NDI’s two redox waves coalesce into a single two‐electron process with shifts of 240 and 710 mV, for the first and second reductions, respectively, increasing the energy density by over 20 % without changing the polymer backbone. In contrast, the formal reduction potentials of NDI derivatives in solution are identical for each electrolyte, and this effect has not been reported for NDI previously. This study illustrates the profound influence of the solid‐state structure of a polymer on its electrochemical response, which does not simply reflect the solution‐phase redox behavior of its monomers.  相似文献   

3.
Extraction of lithium ions from salt‐lake brines is very important to produce lithium compounds. Herein, we report a new approach to construct polystyrene sulfonate (PSS) threaded HKUST‐1 metal–organic framework (MOF) membranes through an in situ confinement conversion process. The resulting membrane PSS@HKUST‐1‐6.7, with unique anchored three‐dimensional sulfonate networks, shows a very high Li+ conductivity of 5.53×10?4 S cm?1 at 25 °C, 1.89×10?3 S cm?1 at 70 °C, and Li+ flux of 6.75 mol m?2 h?1, which are five orders higher than that of the pristine HKUST‐1 membrane. Attributed to the different size sieving effects and the affinity differences of the Li+, Na+, K+, and Mg2+ ions to the sulfonate groups, the PSS@HKUST‐1‐6.7 membrane exhibits ideal selectivities of 78, 99, and 10296 for Li+/Na+, Li+/K+, Li+/Mg2+ and real binary ion selectivities of 35, 67, and 1815, respectively, the highest ever reported among ionic conductors and Li+ extraction membranes.  相似文献   

4.
Poly(1,5‐diaminoanthraquinone) is synthesized by oxidative polymerization of diaminoanthraquinone monomers and investigated as an organic host for Li‐storage reaction. Benefiting from its high density of redox‐active, Li+‐associable benzoquinone groups attached to conducting polyaniline backbones, this polymer undergoes its cathodic reaction predominately through Li+‐insertion/extraction processes, delivering a very high reversible capacity of 285 mAh g?1. In addition, the PDAQ polymer cathode exhibits an excellent rate capability (125 mAh g?1 at 800 mA g?1) and a considerable cyclability with a capacity retention of ~160 mAh g?1 over 200 cycles, possibly serving as a sustainable, high capacity Li+ host cathode for Li‐ion batteries. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 235–238  相似文献   

5.
The effect of solvent on the strength of noncovalent interactions and ionic mobility of the dibenzo‐18‐crown‐6 complex with K+ in water/organic solvents was investigated by using affinity capillary electrophoresis. The proportion of organic solvent (methanol, ethanol, propan‐2‐ol, and acetonitrile) in the mixtures ranged from 0 to 100 vol.%. The stability constant, KKL, and actual ionic mobility of the dibenzo‐18‐crown‐6‐K+ complex were determined by the nonlinear regression analysis of the dependence of the effective electrophoretic mobility of dibenzo‐18‐crown‐6 on the concentration of K+ (added as KCl) in the background electrolyte (25 mM lithium acetate, pH 5.5, in the above mixed hydro–organic solvents). Competitive interaction of the dibenzo‐18‐crown‐6 with Li+ was observed and quantified in mixtures containing more than 60 vol.% of the organic solvent. However, the stability constant of the dibenzo‐18‐crown‐6‐Li+ complex was in all cases lower than 0.5 % of KKL. The log KKL increased approximately linearly in the range 1.62–4.98 with the increasing molar fraction of organic solvent in the above mixed solvents and with similar slopes for all four organic solvents used in this study. The ionic mobilities of the dibenzo‐18‐crown‐6‐K+ complex were in the range (6.1–43.4) × 10?9 m2 V?1 s?1.  相似文献   

6.
1D nonplanar graphene nanoribbons generally have three possible conformers: helical, zigzag, and mixed conformations. Now, a kind of 1D nonplanar graphene nanoribbon, namely dodecatwistarene imides featuring twelve linearly fused benzene rings, was obtained by bottom‐up synthesis of palladium‐catalyzed Stille coupling and C?H activation. Single‐crystal X‐ray diffraction analyses revealed that it displays a zigzag‐twisted conformation caused by steric hindrance between imide groups and neighboring annulated benzene rings with the pendulum angle of 53°. This conformation is very stable and could not convert into other conformations even when heated up to 250 °C for 6 h. Despite of the highly twisted topology, organic field‐effect transistor based on it exhibits electron mobility up to 1.5 cm2 V?1 s?1 after annealing.  相似文献   

7.
Black phosphorus (BP) is a desirable anode material for alkali metal ion storage owing to its high electronic/ionic conductivity and theoretical capacity. In‐depth understanding of the redox reactions between BP and the alkali metal ions is key to reveal the potential and limitations of BP, and thus to guide the design of BP‐based composites for high‐performance alkali metal ion batteries. Comparative studies of the electrochemical reactions of Li+, Na+, and K+ with BP were performed. Ex situ X‐ray absorption near‐edge spectroscopy combined with theoretical calculation reveal the lowest utilization of BP for K+ storage than for Na+ and Li+, which is ascribed to the highest formation energy and the lowest ion diffusion coefficient of the final potassiation product K3P, compared with Li3P and Na3P. As a result, restricting the formation of K3P by limiting the discharge voltage achieves a gravimetric capacity of 1300 mAh g?1 which retains at 600 mAh g?1 after 50 cycles at 0.25 A g?1.  相似文献   

8.
Molecular dynamics simulations have been performed on oligo(ethylene oxide)s of various molecular weights doped with the lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI) in order to explore the mechanism of Li+ transport in materials covering the range from liquid electrolytes to prototypes for high molecular weight poly(ethylene oxide)-based polymer electrolytes. Good agreement between MD simulations and experiments is observed for the conductivity of electrolytes as a function of molecular weight. Unlike Li+ transport in liquid ethylene carbonate (EC) that comes from approximately equal contributions of vehicular Li+ motion (motion together with solvent) and Li+ diffusion by solvent exchange, Li+ transport in oligoethers was found to occur predominantly by vehicular motion. The slow solvent exchange of Li+ in oligo(ethylene oxide)s highlights why high molecular weight amorphous polymer electrolytes with oligo(ethylene oxide)s solvating groups suffer from poor Li+ transport. Ion complexation and correlation of cation and anion motion is examined for oligoethers and compared with that in EC.  相似文献   

9.
Adaptive biasing force molecular dynamics simulations and density functional theory calculations were performed to understand the interaction of Li+ with pure carbonates and ethylene carbonate (EC)‐based binary mixtures. The most favorable Li carbonate cluster configurations obtained from molecular dynamics simulations were subjected to detailed structural and thermochemistry calculations on the basis of the M06‐2X/6‐311++G(d,p) level of theory. We report the ranking of these electrolytes on the basis of the free energies of Li‐ion solvation in carbonates and EC‐based mixtures. A strong local tetrahedral order involving four carbonates around the Li+ was seen in the first solvation shell. Thermochemistry calculations revealed that the enthalpy of solvation and the Gibbs free energy of solvation of the Li+ ion with carbonates are negative and suggested the ion–carbonate complexation process to be exothermic and spontaneous. Natural bond orbital analysis indicated that Li+ interacts with the lone pairs of electrons on the carbonyl oxygen atom in the primary solvation sphere. These interactions lead to an increase in the carbonyl (C=O) bond lengths, as evidenced by a redshift in the vibrational frequencies [ν(C=O)] and a decrease in the electron density values at the C=O bond critical points in the primary solvation sphere. Quantum theory of atoms in molecules, localized molecular orbital energy decomposition analysis (LMO‐EDA), and noncovalent interaction plots revealed the electrostatic nature of the Li+ ion interactions with the carbonyl oxygen atoms in these complexes. On the basis of LMO‐EDA, the strongest attractive interaction in these complexes was found to be the electrostatic interaction followed by polarization, dispersion, and exchange interactions. Overall, our calculations predicted EC and a binary mixture of EC/dimethyl carbonate to be appropriate electrolytes for Li‐ion batteries, which complies with experiments and other theoretical results.  相似文献   

10.
Rational composite materials made from transition metal sulfides and reduced graphene oxide (rGO) are highly desirable for designing high‐performance lithium‐ion batteries (LIBs). Here, rGO‐coated or sandwiched CoSx composites are fabricated through facile thermal sulfurization of metal–organic framework/GO precursors. By scrupulously changing the proportion of Co2+ and organic ligands and the solvent of the reaction system, we can tune the forms of GO as either a coating or a supporting layer. Upon testing as anode materials for LIBs, the as‐prepared CoSx‐rGO‐CoSx and rGO@CoSx composites demonstrate brilliant electrochemical performances such as high initial specific capacities of 1248 and 1320 mA h g?1, respectively, at a current density of 100 mA g?1, and stable cycling abilities of 670 and 613 mA h g?1, respectively, after 100 charge/discharge cycles, as well as superior rate capabilities. The excellent electrical conductivity and porous structure of the CoSx/rGO composites can promote Li+ transfer and mitigate internal stress during the charge/discharge process, thus significantly improving the electrochemical performance of electrode materials.  相似文献   

11.
The electrochemical behavior of the Li+/Li couple was studied at polycrystalline tungsten, platinum, copper and aluminum electrodes in tri‐1‐butylmethylammonium bis((trifluoromethyl)sulfonyl)imide ionic liquid mixed with a little propylene carbonate at 30 °C. Lithium cations were introduced into the ionic liquid by dissolution of lithium bis((trifluoromethyl)sulfonyl)imide which is highly soluble in ionic liquid. Propylene carbonate was used to reduce the viscosity of this ionic liquid in order to enhance the mass transfer and to additionally improve the stability of lithium deposits. At the tungsten and copper electrodes, the cyclic voltammetric behavior of a Li+/Li couple is a quasi‐reversible reaction. At the platinum electrode, the behavior becomes very complicated because of the alloy formation. Coulombic efficiency was used to evaluate the stability of lithium deposits at each electrode. The aluminum electrode showed the best efficiency due to the formation of Li‐Al alloy. However, lowest efficiency was obtained at the platinum electrode because of the low redox reversibility of the lithium in the Li‐Pt alloy. The diffusion coefficient of lithium cation in this solution was 1.0 ± 0.1 × 10?;7 cm2 s?;1 as determined by chronopotentiometry. The best coulombic efficiency obtained at the Al electrode is 97% but dropped to about 90% after 12 hours. The self‐discharge current of the lithium deposits at the Al electrode was 0.4 μA/cm2 during the experimental period.  相似文献   

12.
Recently, carboxylate metal‐organic framework (MOF) materials were reported to perform well as anode materials for lithium‐ion batteries (LIBs); however, the presumed lithium storage mechanism of MOFs is controversial. To gain insight into the mechanism of MOFs as anode materials for LIBs, a self‐supported Cu‐TCNQ (TCNQ: 7,7,8,8‐tetracyanoquinodimethane) film was fabricated via an in situ redox routine, and directly used as electrode for LIBs. The first discharge and charge specific capacities of the self‐supported Cu‐TCNQ electrode are 373.4 and 219.4 mAh g?1, respectively. After 500 cycles, the reversible specific capacity of Cu‐TCNQ reaches 280.9 mAh g?1 at a current density of 100 mA g?1. Mutually validated data reveal that the high capacity is ascribed to the multiple‐electron redox conversion of both metal ions and ligands, as well as the reversible insertion and desertion of Li+ ions into the benzene rings of ligands. This work raises the expectation for MOFs as electrode materials of LIBs by utilizing multiple active sites and provides new clues for designing improved electrode materials for LIBs.  相似文献   

13.
Poly(triazine imide) with intercalation of lithium and chloride ions (PTI/Li+Cl?) was synthesized by temperature‐induced condensation of dicyandiamide in a eutectic mixture of lithium chloride and potassium chloride as solvent. By using this ionothermal approach the well‐known problem of insufficient crystallinity of carbon nitride (CN) condensation products could be overcome. The structural characterization of PTI/Li+Cl? resulted from a complementary approach using spectroscopic methods as well as different diffraction techniques. Due to the high crystallinity of PTI/Li+Cl? a structure solution from both powder X‐ray and electron diffraction patterns using direct methods was possible; this yielded a triazine‐based structure model, in contrast to the proposed fully condensed heptazine‐based structure that has been reported recently. Further information from solid‐state NMR and FTIR spectroscopy as well as high‐resolution TEM investigations was used for Rietveld refinement with a goodness‐of‐fit (χ2) of 5.035 and wRp=0.05937. PTI/Li+Cl? (P63cm (no. 185); a=846.82(10), c=675.02(9) pm) is a 2D network composed of essentially planar layers made up from imide‐bridged triazine units. Voids in these layers are stacked upon each other forming channels running parallel to [001], filled with Li+ and Cl? ions. The presence of salt ions in the nanocrystallites as well as the existence of sp2‐hybridized carbon and nitrogen atoms typical of graphitic structures was confirmed by electron energy‐loss spectroscopy (EELS) measurements. Solid‐state NMR spectroscopy investigations using 15N‐labeled PTI/Li+Cl? proved the absence of heptazine building blocks and NH2 groups and corroborated the highly condensed, triazine‐based structure model.  相似文献   

14.
2-Butyndioic acid and its Li-salt polymerize under high pressure to form potential cathode material for Li-battery.  相似文献   

15.
应用红外及拉曼光谱研究了不同浓度的四氟硼酸锂在4-乙氧甲基-碳酸乙烯酯溶剂中的离子溶剂化和离子缔合现象。环形变谱带和羰基伸缩振动谱带的分裂,以及骨架环振动谱带的迁移和分裂表明,锂离子与溶剂分子间存在着较强的相互作用,这种相互作用是通过溶剂羰基氧原子实现的。利用光谱拟合技术定量计算了表观溶剂化数。随着电解质锂盐浓度的增加,溶剂化数逐渐由4.32降至1.26。此外,四氟硼酸根v1谱带的分裂表明在高浓度溶液中存在着光谱自由的四氟硼酸根、直接接触离子对和离子对二聚体。  相似文献   

16.
Graphite is a redox‐amphoteric intercalation host and thus capable to incorporate various types of cations and anions between its planar graphene sheets to form so‐called donor‐type or acceptor‐type graphite intercalation compounds (GICs) by electrochemical intercalation at specific potentials. While the LiCx/Cx donor‐type redox couple is the major active compound for state‐of‐the‐art negative electrodes in lithium‐ion batteries, acceptor‐type GICs were proposed for positive electrodes in the “dual‐ion” and “dual‐graphite” cell, another type of electrochemical energy storage system. In this contribution, we analyze the electrochemical intercalation of different anions, such as bis(trifluoromethanesulfonyl) imide or hexafluorophosphate, into graphitic carbons by means of in situ X‐ray diffraction (XRD). In general, the characterization of battery electrode materials by in situ XRD is an important technique to study structural and compositional changes upon insertion and de‐insertion processes during charge/discharge cycling. We discuss anion (X) and cation (M+) intercalation/de‐intercalation into graphites on a comparative basis with respect to the Mx+Cn and Cn+Xn stoichiometry, discharge capacity, the intercalant gallery height/gallery expansion and the M–M or X–X in‐plane distances.  相似文献   

17.
Graphene‐like and platelike WS2 were obtained by solid‐state reactions. High‐resolution (HR) TEM, BET, and Raman scattering studies show that the graphene‐like WS2 is a few‐layer‐structured material. It exhibits better electrochemical performances than the platelike WS2. Structural characterization indicates that metallic W and Li2S are the end products of discharge (0.01 V versus Li+/Li), whereas metallic W and S are the recharge (3.00 V) products. In addition, X‐ray absorption near‐edge structure (XANES) characterization shows that the d electrons of W deviate towards the Li (or S) atom during the discharge/charge process, thus forming a weak bond between W and Li2S (or S).  相似文献   

18.
The stabilization energies (ΔEform) calculated for the formation of the Li+ complexes with mono‐, di‐ tri‐ and tetra‐glyme (G1, G2, G3 and G4) at the MP2/6‐311G** level were ?61.0, ?79.5, ?95.6 and ?107.7 kcal mol?1, respectively. The electrostatic and induction interactions are the major sources of the attraction in the complexes. Although the ΔEform increases by the increase of the number of the O???Li contact, the ΔEform per oxygen atom decreases. The negative charge on the oxygen atom that has contact with the Li+ weakens the attractive electrostatic and induction interactions of other oxygen atoms with the Li+. The binding energies calculated for the [Li(glyme)]+ complexes with TFSA? anion (glyme=G1, G2, G3, and G4) were ?106.5, ?93.7, ?82.8, and ?70.0 kcal mol?1, respectively. The binding energies for the complexes are significantly smaller than that for the Li+ with the TFSA? anion. The binding energy decreases by the increase of the glyme chain length. The weak attraction between the [Li(glyme)]+ complex (glyme=G3 and G4) and TFSA? anion is one of the causes of the fast diffusion of the [Li(glyme)]+ complex in the mixture of the glyme and the Li salt in spite of the large size of the [Li(glyme)]+ complex. The HOMO energy level of glyme in the [Li(glyme)]+ complex is significantly lower than that of isolated glyme, which shows that the interaction of the Li+ with the oxygen atoms of glyme increases the oxidative stability of the glyme.  相似文献   

19.
Counterion mixing effects on the volume phase transition and the coil‐globule transition of alkali metal poly(acrylate)s (PAAM) in aqueous organic solvents were investigated by observing the swelling behavior of PAAM gel and by measuring the solution viscosity and the conductivity as a function of the counterion mixing ratio. Marked transitions to the collapsed states were induced only for Li+/Cs+ system in most solvent systems; namely, PAA gel significantly collapsed in the presence of Li+ and Cs+ counterions irrespective of the solvent species employed, while only a slight deswelling was observed for Li+/K+ system in some aqueous organic solvents. Corresponding specific decrements in the solution viscosity and conductivity were also confirmed for the combination of Li+ and Cs+ in aqueous dimethyl sulfoxide (DMSO) system. A simple analysis of the conductivity decrement observed for Li+/Cs+ system in 60 vol % DMSO suggested that only Cs+ is tightly bound upon addition of Li+ while no restriction is induced for Li+ upon mixing with Cs+. A working hypothesis is proposed for the apparently intriguing behaviors of the counterions in the mixed system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2122–2131, 2009  相似文献   

20.
The synthesis, electrochemical, optical, and cation‐sensing properties of [2.2]ferrocenophanes, in which the two ferrocene subunits are linked through two aldiminic or iminophosphorane moieties, are reported. The new compounds show remarkably selective cation‐sensing properties due to the presence of redox‐active units (ferrocene) and aza‐unsaturated functionalities that are able to act as putative cation‐binding sites. In this structural motif, the aldimine groups act as a highly selective binding site for Zn2+ cations, whereas the iminophosphorane bridges display an unusually strong binding affinity towards Li+ cations, which could be explained by an additional Li???Fe interaction. The X‐ray structure of the complex 4? Li+ as well as detailed NMR spectroscopic studies, both in solution and in the solid state, support this assessment. Experimental data and conclusions about the cation‐sensing capabilities of this family of compounds are supported by DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号