首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
It is recognized that biocomputing can provide intelligent solutions to complex biosensing projects. However, it remains challenging to transform biomolecular logic gates into convenient, portable, resettable and quantitative sensing systems for point‐of‐care (POC) diagnostics in a low‐resource setting. To overcome these limitations, the first design of biocomputing on personal glucose meters (PGMs) is reported, which utilizes glucose and the reduced form of nicotinamide adenine dinucleotide as signal outputs, DNAzymes and protein enzymes as building blocks, and demonstrates a general platform for installing logic‐gate responses (YES, NOT, INHIBIT, NOR, NAND, and OR) to a variety of biological species, such as cations (Na+), anions (citrate), organic metabolites (adenosine diphosphate and adenosine triphosphate) and enzymes (pyruvate kinase, alkaline phosphatase, and alcohol dehydrogenases). A concatenated logical gate platform that is resettable is also demonstrated. The system is highly modular and can be generally applied to POC diagnostics of many diseases, such as hyponatremia, hypernatremia, and hemolytic anemia. In addition to broadening the clinical applications of the PGM, the method reported opens a new avenue in biomolecular logic gates for the development of intelligent POC devices for on‐site applications.  相似文献   

2.
We report a discovery that personal glucose meters (PGMs) can give a dose‐dependent response to nicotinamide coenzymes, such as the reduced form of nicotinamide adenine dinucleotide (NADH). We have developed methods that take advantage of this discovery to perform one‐step homogeneous assays of many non‐glucose targets that are difficult to recognize by DNAzymes, aptamers, or antibodies, and without the need for conjugation and multiple steps of sample dilution, separation, or fluid manipulation. The methods are based on the target‐induced consumption or production of NADH through cascade enzymatic reactions. Simultaneous monitoring of the glucose and L ‐lactate levels in human plasma from patients with diabetes is demonstrated and the results are comparable to those from current standard test methods. Since a large number of commercially available enzymatic assay kits utilize NADH in their detection, this discovery will allow the transformation of almost all of these clinical lab tests into POC tests that use a PGM.  相似文献   

3.
The design of a portable Raman/SERS‐LFA reader with line illumination using a custom‐made fiber optic probe for rapid, quantitative, and ultrasensitive point‐of‐care testing (POCT) is presented. The pregnancy hormone human chorionic gonadotropin (hCG) is detectable in clinical samples within only 2–5 s down to approximately 1.6 mIU mL?1. This acquisition time is several orders of magnitude shorter than those of existing approaches requiring expensive Raman instrumentation, and the method is 15‐times more sensitive than a commercially available lateral flow assay (LFA) as the gold standard. The SERS‐LFA technology paves the way for affordable, quantitative, and ultrasensitive POCT with multiplexing potential in real‐world applications, ranging from clinical chemistry to food and environmental analysis as well as drug and biowarfare agent testing.  相似文献   

4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号