首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
CdS quantum dots/C60 tubular micromotors with chemical/multi‐light‐controlled propulsion and “on‐the‐fly” acceleration capabilities are described. In situ growth of CdS quantum dots on the outer fullerene layer imparts this layer with light‐responsive properties in connection to inner Pt, Pd or MnO2 layers. This is the first time that visible light is used to drive bubble‐propelled tubular micromotors. The micromotors exhibit a broad absorption range from 320 to 670 nm and can be wirelessly controlled by modulating light intensity and peroxide concentration. The built‐in accelerating optical system allows for the control of the velocity over the entire UV/Vis light spectra by modulating the catalyst surface chemistry. The light‐responsive properties have been also exploited to accelerate the chemical dealloying and propulsion of micromotors containing a Cu/Pd layer. Such dual operated hybrid micromotors hold considerable promise for designing smart micromachines for on‐demand operations, motion‐based sensing, and enhanced cargo transportation.  相似文献   

2.
A micromotor‐based strategy for energy generation, utilizing the conversion of liquid‐phase hydrogen to usable hydrogen gas (H2), is described. The new motion‐based H2‐generation concept relies on the movement of Pt‐black/Ti Janus microparticle motors in a solution of sodium borohydride (NaBH4) fuel. This is the first report of using NaBH4 for powering micromotors. The autonomous motion of these catalytic micromotors, as well as their bubble generation, leads to enhanced mixing and transport of NaBH4 towards the Pt‐black catalytic surface (compared to static microparticles or films), and hence to a substantially faster rate of H2 production. The practical utility of these micromotors is illustrated by powering a hydrogen–oxygen fuel cell car by an on‐board motion‐based hydrogen and oxygen generation. The new micromotor approach paves the way for the development of efficient on‐site energy generation for powering external devices or meeting growing demands on the energy grid.  相似文献   

3.
A light‐driven multifunctional Janus micromotor for the removal of bacterial endotoxins and heavy metals is described. The micromotor was assembled by using the biocompatible polymer polycaprolactone for the encapsulation of CdTe or CdSe@ZnS quantum dots (QDs) as photoactive materials and an asymmetric Fe3O4 patch for propulsion. The micromotors can be activated with visible light (470–490 nm) to propel in peroxide or glucose media by a diffusiophoretic mechanism. Efficient propulsion was observed for the first time in complex samples such as human blood serum. These properties were exploited for efficient endotoxin removal using lipopolysaccharides from Escherichia coli O111:B4 as a model toxin. The micromotors were also used for mercury removal by cationic exchange with the CdSe@ZnS core–shell QDs. Cytotoxicity assays in HeLa cell lines demonstrated the high biocompatibility of the micromotors for future detoxification applications.  相似文献   

4.
Synthetic microrobots or micromotors are known to show “intelligent” behavior such as magnetotaxis, phototaxis, chemotaxis, active detection, and chemical communication. Herein, we present the concept of micromotors laying “breadcrumbs”; that is, these micromachines can move/return to a home position without external guidance after their external energy input is stopped. As a demonstration, TiO2/Pt Janus micromotors that move forward with UV light can return back following the previous path when the UV light is turned off. Such autonomy of motion opens the door for truly independent applications of micromotors in the “deliver‐and‐return” fashion.  相似文献   

5.
Self‐propelled miniaturized machines harness the chemical potential of their environment for movement. Locomotion of chemically powered micromotors have been hugely dependent on the surroundings. The use of pH to alter the mobility of micromotors is demonstrated in this work through the manipulation of hydrogen peroxide chemistry in different acidity/alkalinity. The sequential addition of sodium hydroxide to increase the pH of the solution led to a consequent increase in activity of micromotors. Meanwhile, addition of hydrochloric acid compromised the structural integrity of the microstructures, culminating in locomotive changes. Such dramatic changes in activity and velocities of the micromotors allow the usage of this behavior for pH detection. This concept was illustrated with Janus silver micromotors and tubular bimetallic Cu/Pt micromotors. Alteration of pH serves as a useful general strategy for increasing hydrogen peroxide decomposition for enhanced oxygen‐bubble propulsion in catalytic micromotors.  相似文献   

6.
A novel concept of an iridium‐based bubble‐propelled Janus‐particle‐type graphene micromotor with very high surface area and with very low catalyst loading is described. The low loading of Ir catalyst (0.54 at %) allows for fast motion of graphene microparticles with high surface area of 316.2 m2 g?1. The micromotor was prepared with a simple and scalable method by thermal exfoliation of iridium‐doped graphite oxide precursor composite in hydrogen atmosphere. Oxygen bubbles generated from the decomposition of hydrogen peroxide at the iridium catalytic sites provide robust propulsion thrust for the graphene micromotor. The high surface area and low iridium catalyst loading of the bubble‐propelled graphene motors offer great possibilities for dramatically enhanced cargo delivery.  相似文献   

7.
Magnetocatalytic hybrid Janus micromotors encapsulating phenylboronic acid (PABA) modified graphene quantum dots (GQDs) are described herein as ultrafast sensors for the detection of deadly bacteria endotoxins. A bottom‐up approach was adopted to synthesize an oil‐in‐water emulsion containing the GQDs along with a high loading of platinum and iron oxide nanoparticles on one side of the Janus micromotor body. The two different “active regions” enable highly efficient propulsion in the presence of hydrogen peroxide or magnetic actuation without the addition of a chemical fuel. Fluorescence quenching was observed upon the interaction of GQDs with the target endotoxin (LPS), whereby the PABA tags acted as highly specific recognition receptors of the LPS core polysaccharide region. Such adaptive hybrid operation and highly specific detection hold considerable promise for diverse clinical, agrofood, and biological applications and integration in future lab‐on‐chip technology.  相似文献   

8.
We report a self‐propelled Janus silica micromotor as a motion‐based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self‐propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s?1. Biotin‐functionalized Janus micromotors can specifically capture and rapidly transport streptavidin‐modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self‐propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab‐on‐chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications.  相似文献   

9.
Z‐scheme water splitting is a promising approach based on high‐performance photocatalysis by harvesting broadband solar energy. Its efficiency depends on the well‐defined interfaces between two semiconductors for the charge kinetics and their exposed surfaces for chemical reactions. Herein, we report a facile cation‐exchange approach to obtain compounds with both properties without the need for noble metals by forming Janus‐like structures consisting of γ‐MnS and Cu7S4 with high‐quality interfaces. The Janus‐like γ‐MnS/Cu7S4 structures displayed dramatically enhanced photocatalytic hydrogen production rates of up to 718 μmol g−1 h−1 under full‐spectrum irradiation. Upon further integration with an MnOx oxygen‐evolution cocatalyst, overall water splitting was accomplished with the Janus structures. This work provides insight into the surface and interface design of hybrid photocatalysts, and offers a noble‐metal‐free approach to broadband photocatalytic hydrogen production.  相似文献   

10.
The motion of catalytic tubular micromotors are driven by the oxygen bubbles generated from chemical reaction and is influenced by the resistance from the liquid environment. Herein, we fabricated a rolled‐up graphene tubular micromotor, in which the graphene layer was adopted as the outmost surface. Due to the hydrophobic property of the graphene layer, the fabricated micromotor performed a motion pattern that could escape from the attraction from the bubbles. In addition, Escherichia coli and Staphylococcus culture experiments proved that the graphene outer surface displays antibacterial property. Considering the bubble‐avoiding and antibacterial properties, the rolled‐up graphene tubular micromotor holds great potential for various applications such as in vivo drug delivery and biosensors.  相似文献   

11.
Pt nanoparticles are typically decorated as co‐catalyst on semiconductors to enhance the photocatalytic performance. Due to the low abundance and high cost of Pt, reaching a high activity with minimized co‐catalyst loadings is a key challenge in the field. We explore a dewetting‐dealloying strategy to fabricate on TiO2 nanotubes nanoporous Pt nanoparticles, aiming at improving the co‐catalyst mass activity for H2 generation. For this, we sputter first Pt‐Ni bi‐layers of controllable thickness (nm range) on highly ordered TiO2 nanotube arrays, and then induce dewetting‐alloying of the Pt‐Ni bi‐layers by a suitable annealing step in a reducing atmosphere: the thermal treatment causes the Pt and Ni films to agglomerate and at the same time mix with each other, forming on the TiO2 nanotube surface metal islands of a mixed PtNi composition. In a subsequent step we perform chemical dealloying of Ni that is selectively etched out from the bimetallic dewetted islands, leaving behind nanoporous Pt decorations. Under optimized conditions, the nanoporous Pt‐decorated TiO2 structures show a>6 times higher photocatalytic H2 generation activity compared to structures modified with a comparable loading of dewetted, non‐porous Pt. We ascribe this beneficial effect to the nanoporous nature of the dealloyed Pt co‐catalyst, which provides an increased surface‐to‐volume ratio and thus a more efficient electron transfer and a higher density of active sites at the co‐catalyst surface for H2 evolution.  相似文献   

12.
TiO2 nanoparticles are of great current interest for applications in photo‐electronic materials including light‐energy conversion, artificial photosynthetic systems as well as photocatalysis. The success of these applications relies on the exciton recombination dynamics and visible‐light sensitivity of the TiO2 nanomaterials. Thus, in order to develop the highly efficient photo‐electronic materials absorbing visible light, different low dimensional TiO2 nanostructures such as nanodiscs, nanofibers and nanochains were synthesized, and thereafter their surfaces were modified by incorporating with Sn‐porphyrins and heteropoly acid. The optoelectronic properties of the surface‐modified nanomaterials were investigated with regard to the optical properties and the surface exciton dynamics by using both steady‐state and ultrafast time‐resolved laser spectroscopic techniques including single nanoparticle photoluminescence technique. These results were correlated with the photo‐electronic properties including photocatalytic activities and solar cell efficiencies, indicating that the electron transfer mechanism in the modified nanostructures may be similar to the “Z‐scheme” of the plant photosynthetic system so that both photocatalytic activity and solar cell efficiencies were synergistically enhanced by using two color illumination.  相似文献   

13.
Extraction of nucleic acids in microsystems is of significance for biomedical applications, but the current extraction methods generally require sophisticated microchannels and external equipment, hindering their practical applications. In this work, we have demonstrated a simple, versatile and efficient approach to extract nucleic acids in microsystems by developing cationic branched polyethyleneimine (PEI)‐functionalized tubular micromotors. The as‐developed tubular micromotors are fabricated by a two‐step process combining the template‐assisted electrodeposition and carbodiimide chemistry, and contain an inner catalytic Pt layer, a middle magnetic Ni layer and an outer cationic PEI layer. They exhibit autonomous bubble‐propelled motion in aqueous hydrogen peroxide solutions, which can be guided by an external magnetic field, and the surface charges can be reversibly modulated by changing the pH value of the solution. Consequently, the as‐developed tubular micromotors can selectively absorb nucleic acids from acidic solutions and desorb them into alkaline solutions, leading to the extraction of nucleic acids with high efficiency without external stirring. Furthermore, they can be operated in a microchannel chip without the aid of a pumping system. Our results indicate that this PEI‐functionalized tubular micromotor platform provides a novel, simple and versatile microsystem nucleic acid extraction technology, holding considerable promise for important practical applications.  相似文献   

14.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

15.
Lubricant impregnated surfaces (LISs) exhibit sliding angles below 5°. A LIS is presented that possesses photocatalytic activity as well as improved liquid repellency. In a single‐step reaction, the surface of photocatalytic mesoporous TiO2 substrate is modified by grafting polydimethylsiloxane (PDMS) brush and the residual non‐bound PDMS serves as lubricant. Since the lubricant and the hydrophobic layer are chemically identical, the grafting PDMS layer is stably swollen by the lubricant PDMS, which inhibits direct contact of liquid drops to the solid substrate. Liquid drops such as water, methanol, and even low‐surface‐tension fluorocarbons, slide on the surface with tilt angles below 1°. The surface exhibits long‐term stable photocatalytic activity while retaining its liquid repellency. This photocatalytic activity allows photocatalytic chemistry, for example, decomposition of organics, on LIS to be carried out.  相似文献   

16.
Helical micro/nanomotors (MNMs) can be propelled by external fields to swim through highly viscous fluids like complex biological environments, which promises miniaturized robotic tools to perform assigned tasks at small scales. However, the catalytic propulsion method, most widely adopted to drive MNMs, is seldom studied to actuate helical MNMs. Herein, we report catalytic helical carbon MNMs (CHCM) by sputtering Pt onto helical carbon nano‐coils (HCNC) that are in bulk prepared by a thermal chemical vapor deposition method. The Pt‐triggered H2O2 decomposition can drive the MNMs by an electrokinetic mechanism. The MNMs demonstrate versatile motion behaviors including both directional propulsion and rotation depending on the turn number of the carbon helix. Besides, due to the ease of surface functionalization on carbon and other properties such as biocompatibility and photothermal effect, the helical carbon MNMs promise multifunctional applications for biomedical or environmental applications.  相似文献   

17.
A high‐efficiency nanoelectrocatalyst based on high‐density Au/Pt hybrid nanoparticles supported on a silica nanosphere (Au‐Pt/SiO2) has been prepared by a facile wet chemical method. Scanning electron microscopy, transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy are employed to characterize the obtained Au‐Pt/SiO2. It was found that each hybrid nanosphere is composed of high‐density small Au/Pt hybrid nanoparticles with rough surfaces. These small Au/Pt hybrid nanoparticles interconnect and form a porous nanostructure, which provides highly accessible activity sites, as required for high electrocatalytic activity. We suggest that the particular morphology of the Au‐Pt/SiO2 may be the reason for the high catalytic activity. Thus, this hybrid nanomaterial may find a potential application in fuel cells.  相似文献   

18.
A novel Pt–TiO2/Ag nanotube photocatalyst has been synthesized successfully via a facile method. TiO2 nanotubes are assembled with numerous ultrathin TiO2 nanosheets and show a highly open structure. The gaps between adjacent TiO2 nanosheets can serve as channels for the access of reactants, accelerating the mass transfer process. During the fabrication process of the Pt–TiO2/Ag nanotube photocatalyst, high‐quality Pt–SiO2 nanotubes are synthesized first with the structure‐directing effect of polyvinylpyrrolidone. Then a TiO2 layer is coated on the outside surface of the silica nanotubes. The introduced titanium species can be converted into TiO2 nanosheet structure during the subsequent hydrothermal treatment, gradually constructing nanosheet‐assembled nanotubes. Lastly, after the introduction of another electron sink function site of Ag through UV irradiation, the Pt–TiO2/Ag nanotube photocatalyst with dual electron sink functional sites is obtained. The specially doped Pt and Ag NPs can simultaneously inhibit the recombination process of photogenerated charge carriers and increase light utilization efficiency. Therefore, the as‐synthesized Pt–TiO2/Ag nanotube catalyst exhibits a high photocatalytic degradation performance for rhodamine B of 0.2 min?1, which is about 3.2 and 5.3 times as high as that of Pt–TiO2 and TiO2 nanotubes because of the enhanced charge carrier separation efficiency. Furthermore, in the unique nanoarchitecture, the nanotubes are assembled with numerous ultrathin TiO2 nanosheets, which can absorb abundant active species and dye molecules for photocatalytic reaction. On the basis of experimental results, a possible rhodamine B degradation mechanism is proposed to explain the excellent photocatalytic efficiency of the Pt–TiO2/Ag nanotube photocatalyst.  相似文献   

19.
Recently, organic–inorganic hybrid materials have attracted tremendous attention thanks to their outstanding properties, their efficiency, versatility and their promising applications in a broad range of areas at the interface of chemistry and biology. This article deals with a new family of surface‐reactive organic–inorganic hybrid materials built from chitosan microspheres. The gelation of chitosan (a renewable amino carbohydrate obtained by deacetylation of chitin) by pH inversion affords highly dispersed fibrillar networks shaped as self‐standing microspheres. Nanocasting of sol–gel processable monomeric alkoxides inside these natural hydrocolloids and their subsequent CO2 supercritical drying provide high‐surface‐area organic–inorganic hybrid materials. Examples including chitosan–SiO2, chitosan–TiO2, chitosan–redox‐clusters and chitosan–clay‐aerogel microspheres are described and discussed on the basis of their textural and structural properties, thermal and chemical stability and their performance in catalysis and adsorption.  相似文献   

20.
Cerium‐doped titanium dioxide (TiO2) with a hollow fiber structure was successfully prepared using ammonium ceric nitrate and tetrabutyltitanate as precursors and cotton fiber as the template. The effects of cerium (Ce)‐doping on the crystallite sizes, crystal pattern, and optical property of the prepared catalysts were investigated by means of techniques such as scanning electron microscopy (SEM), X‐ray diffraction (XRD), BET surface area, and UV‐vis diffuse absorption spectroscopy. SEM observation showed that the prepared TiO2 fibers possessed fibrous shape inherited from the cotton fiber and had a hollow structure. As confirmed by XRD and UV‐vis diffuse absorption spectroscopy examinations, Ce‐doping restrained the growth of grain size and extended the photoabsorption edge of TiO2 hollow fiber into the visible light region. The present photocatalyst showed higher photocatalytic reactivity in photodegradation of highly concentrated methylene blue (MB) solutions than pure TiO2 under UV and visible light, and the amount of Ce‐doped significantly affected the catalytic property. In the experiment condition, the photocatalytic activity of 0.5 mol% Ce‐doped TiO2 fiber was optimal of all the prepared samples. In addition, the possibility of cyclic usage of the photocatalyst was also confirmed. The material was easily removed by centrifugal separation. Therefore, using the template method and by doping with cerium, TiO2 may hopefully become a low‐energy consuming, high activity and green environmentally friendly catalytic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号