首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two homoleptic alkynyl‐protected gold clusters with compositions of Na[Au25(C≡CAr)18] and (Ph4P)[Au25(C≡CAr)18] (Na? 1 and Ph4P? 1 , Ar=3,5‐bis(trifluoromethyl)phenyl) were synthesized via a direct reduction method. 1 is a magic cluster analogous to [Au25(SR)18]? in terms of electron counts and metal‐to‐ligand ratio. Single‐crystal structure analysis reveals that 1 has an identical Au13 kernel to [Au25(SR)18]?, but adopts a distinctly different arrangement of the six peripheral dimer staple motifs. The steric hindrance of alkynyl ligands is responsible for the D3 arrangement of Au25. The introduction of alkynyl also significantly changes the optical absorption features of the nanocluster as supported by DFT calculations. This magic cluster confirms that there is a similar but quite different parallel alkynyl‐protected metal cluster universe in comparison to the thiolated one.  相似文献   

2.
We report the X‐ray structure of a gold nanocluster with 30 gold atoms protected by 18 1‐adamantanethiolate ligands (formulated as Au30(S‐Adm)18). This nanocluster exhibits a threefold rotationally symmetrical, hexagonal‐close‐packed (HCP) Au18 kernel protected by six dimeric Au2(SR)3 staple motifs. This new structure is distinctly different from the previously reported Au30S(S‐tBu)18 nanocluster protected by 18 tert‐butylthiolate ligands and one sulfido ligand with a face‐centered cubic (FCC) Au22 kernel. The Au30(S‐Adm)18 nanocluster has an anomalous solubility (it is only soluble in benzene but not in other common solvents). This work demonstrates a ligand‐based strategy for controlling nanocluster structure and also provides a method for the discovery of possibly overlooked clusters because of their anomalous solubility.  相似文献   

3.
An alkynyl‐protected gold nanocluster, Au22(tBuC≡C)18 ( 1 ), has been synthesized and its structure has been determined by single‐crystal X‐ray diffraction. The molecular structure consists of a Au13 cuboctahedron kernel and three [Au3(tBuC≡C)4] trimeric staples. The cluster 1 has strong luminescence in the solid state with a 15 % quantum yield, and it displays interesting thermochromic luminescence as revealed by temperature‐dependent emission spectra. The enhanced room‐temperature emission is characterized as thermally activated delayed fluorescence.  相似文献   

4.
A red–near‐IR dual‐emissive nanocluster with the composition [Au10Ag2(2‐py?C≡C)3(dppy)6](BF4)5 ( 1 ; 2‐py?C≡C is 2‐pyridylethynyl, dppy=2‐pyridyldiphenylphosphine) has been synthesized. Single‐crystal X‐ray structural analysis reveals that 1 has a trigonal bipyramidal Au10Ag2 core that contains a planar Au4(2‐py?C≡C)3 unit sandwiched by two Au3Ag(dppy)3 motifs. Cluster 1 shows intense red–NIR dual emission in solution. The visible emission originates from metal‐to‐ligand charge transfer (MLCT) from silver atoms to phosphine ligands in the Au3Ag(dppy)3 motifs, and the intense NIR emission is associated with the participation of 2‐pyridylethynyl in the frontier orbitals of the cluster, which is confirmed by a time‐dependent density functional theory (TD‐DFT) calculation.  相似文献   

5.
A 23‐gold‐atom nanocluster was prepared by NaBH4‐mediated reduction of a solution of PhC?CAu and Ph3PAuSbF6 in CH2Cl2. The cluster composition was determined to be [Au23(PhC?C)9(Ph3P)6]2+ and single‐crystal X‐ray diffraction revealed that the cluster has an unprecedented Au17 kernel protected by three PhC2‐Au‐C2(Ph)‐Au‐C2Ph motifs and six Ph3P groups. The Au17 core can be viewed as the fusion of two Au10 units sharing a Au3 triangle. Electronic structure analysis from DFT calculations suggests that the stability of this unusual 12‐electron cluster is a result of the splitting of the superatomic 1D orbitals under D3h symmetry of the Au17 kernel. The discovery and determination of the structure of the Au23 cluster demonstrates the versatility of the alkynyl ligand in leading to the formation of new cluster compounds.  相似文献   

6.
An alkynyl‐protected gold nanocluster [Au24(C?CPh)14(PPh3)4](SbF6)2 has been prepared by a direct reduction method. Single‐crystal X‐ray diffraction reveals that the molecular structure contains a Au22 core that is made of two Au13‐centered cuboctahedra that share a square face. Two staple‐like PhC?C? Au? C?CPh motifs are located around the center of the rod‐like Au22 core. This Au24 nanocluster is highly emissive in the near‐infrared region with λmax=925 nm and the nature of the HOMO–LUMO transition is investigated by time‐dependent DFT calculations.  相似文献   

7.
A golden fullerene Au32 cluster has been synthesized with amido and phosphine ligands as the protecting agents. Single‐crystal X‐ray structural analysis revealed that this gold nanocluster, [Au32(Ph3P)8(dpa)6] (SbF6)2 (Hdpa=2,2′‐dipyridylamine), has a stable pseudo‐Ih Au328+ core with S6 symmetry, which features an Au12@Au20 Keplerate cage co‐protected by Ph3P and dpa ligands. Quantum‐chemical studies were conducted to elucidate the origin of the special stability of this cluster, and suggest that it is electronically stabilized through metal–ligand interactions.  相似文献   

8.
By directly reducing alkynyl–silver precursors, we successfully obtained a large alkynyl‐protected silver nanocluster, (C7H17ClN)3[Ag112Cl6(C≡CAr)51], which is hitherto the largest structurally characterized silver nanocluster in the alkynyl family. The cluster exhibits four concentric core–shell structures (Ag13@Ag42@Ag48@Ag9), and four types of alkynyl–silver binding modes are observed. Chloride was found to be critical for the stabilization and formation of the silver nanocluster. The release of chloride ions in situ from CH2Cl2 solvent has been confirmed by mass spectrometry. This study suggests that the combination of alkynyl and halide ligands will pave a new way for the synthesis of large silver nanoclusters.  相似文献   

9.
For the first time total structure determination of homoleptic alkynyl‐protected gold nanoclusters is reported. The nanoclusters are synthesized by direct reduction of PhC≡CAu, to give Au44(PhC≡C)28 and Au36(PhC≡C)24. The Au44 and Au36 nanoclusters have fcc‐type Au36 and Au28 kernels, respectively, as well as surrounding PhC≡C‐Au‐C2(Ph)Au‐C≡CPh dimeric “staples” and simple PhC≡C bridges. The structures of Au44(PhC≡C)28 and Au36(PhC≡C)24 are similar to Au44(SR)28 and Au36(SR)24, but the UV/Vis spectra are different. The protecting ligands influence the electronic structures of nanoclusters significantly. The synthesis of these two alkynyl‐protected gold nanoclusters indicates that a series of gold nanoclusters in the general formula Aux (RC≡C)y as counterparts to Aux (SR)y can be expected.  相似文献   

10.
The hardness of oxo ions (O2?) means that coinage‐metal (Cu, Ag, Au) clusters supported by oxo ions (O2?) are rare. Herein, a novel μ4‐oxo supported all‐alkynyl‐protected silver(I)–copper(I) nanocluster [Ag74?xCuxO12(PhC≡C)50] ( NC‐1 , avg. x=37.9) is characterized. NC‐1 is the highest nuclearity silver–copper heterometallic cluster and contains an unprecedented twelve interstitial μ4‐oxo ions. The oxo ions originate from the reduction of nitrate ions by NaBH4. The oxo ions induce the hierarchical aggregation of CuI and AgI ions in the cluster, forming the unique regioselective distribution of two different metal ions. The anisotropic ligand coverage on the surface is caused by the jigsaw‐puzzle‐like cluster packing incorporating rare intermolecular C?H???metal agostic interactions and solvent molecules. This work not only reveals a new category of high‐nuclearity coinage‐metal clusters but shows the special clustering effect of oxo ions in the assembly of coinage‐metal clusters.  相似文献   

11.
An alkynyl-protected gold nanocluster, Au22(tBuC≡C)18 ( 1 ), has been synthesized and its structure has been determined by single-crystal X-ray diffraction. The molecular structure consists of a Au13 cuboctahedron kernel and three [Au3(tBuC≡C)4] trimeric staples. The cluster 1 has strong luminescence in the solid state with a 15 % quantum yield, and it displays interesting thermochromic luminescence as revealed by temperature-dependent emission spectra. The enhanced room-temperature emission is characterized as thermally activated delayed fluorescence.  相似文献   

12.
The controlled synthesis and structure determination of a bimetallic nanocluster Au57Ag53(C≡CPh)40Br12 (Au57Ag53) is presented. The metal core has a four‐shell Au2M3@Au34@Ag51 @Au20 (M=1/3 Au+2/3 Ag) architecture. In contrast to the previously reported large nanoclusters that have highly symmetric kernel structures, the metal atoms in Au57Ag53 are arranged in an irregular manner with C1 symmetry. This cluster exhibits excellent thermal stability and is robust under oxidative or basic conditions. The silver precursors play a key role in dictating the structures of the nanoclusters, which suggests the importance of the counteranions used.  相似文献   

13.
Structural isomerism allows the correlation between structures and properties to be investigated. Unfortunately, the structural isomers of metal nanoparticles are rare and genuine structural isomerism with distinctly different kernel atom packing (e.g., face‐centered cubic (fcc) vs. non‐fcc) has not been reported until now. Herein we introduce a novel ion‐induction method to synthesize a unique gold nanocluster with a twist mirror symmetry structure. The as‐synthesized nanocluster has the same composition but different kernel atom packing to an existing gold nanocluster Au42(TBBT)26 (TBBT=4‐tert‐butylbenzenethiolate). The fcc‐structured Au42(TBBT)26 nanocluster shows more enhanced photoluminescence than the non‐fcc‐structured Au42(TBBT)26 nanocluster, indicating that the fcc‐structure is more beneficial for emission than the non‐fcc structure. This idea was supported by comparison of the emission intensity of another three pairs of gold nanoclusters with similar compositions and sizes but with different kernel atom packings (fcc vs. non‐fcc).  相似文献   

14.
Surface organic ligands play a critical role in stabilizing atomically precise metal nanoclusters in solutions. However, it is still challenging to prepare highly robust ligated metal nanoclusters that are surface‐active for liquid‐phase catalysis without any pre‐treatment. Now, an N‐heterocyclic carbene‐stabilized Au25 nanocluster with high thermal and air stabilities is presented as a homogenous catalyst for cycloisomerization of alkynyl amines to indoles. The nanocluster, characterized as [Au25(iPr2‐bimy)10Br7]2+ (iPr2‐bimy=1,3‐diisopropylbenzimidazolin‐2‐ylidene) ( 1 ), was synthesized by direct reduction of AuSMe2Cl and iPr2‐bimyAuBr with NaBH4 in one pot. X‐ray crystallization analysis revealed that the cluster comprises two centered Au13 icosahedra sharing a vertex. Cluster 1 is highly stable and can survive in solution at 80 °C for 12 h, which is superior to Au25 nanoclusters passivated with phosphines or thiols. DFT computations reveal the origins of both electronic and thermal stability of 1 and point to the probable catalytic sites. This work provides new insights into the bonding capability of N‐heterocyclic carbene to Au in a cluster, and offers an opportunity to probe the catalytic mechanism at the atomic level.  相似文献   

15.
We report a NaOH‐mediated NaBH4 reduction method for the synthesis of mono‐, bi‐, and tri‐thiolate‐protected Au25 nanoclusters (NCs) with precise control of both the Au core and thiolate ligand surface. The key strategy is to use NaOH to tune the formation kinetics of Au NCs, i.e., reduce the reduction ability of NaBH4 and accelerate the etching ability of free thiolate ligands, leading to a well‐balanced reversible reaction for rapid formation of thermodynamically favorable Au25 NCs. This protocol is facile, rapid (≤3 h), versatile (applicable for various thiolate ligands), and highly scalable (>1 g Au NCs). In addition, bi‐ and tri‐thiolate‐protected Au25 NCs with adjustable ratios of hetero‐thiolate ligands were easily obtained. Such ligand precision in molecular ratios, spatial distribution and uniformity resulted in richly diverse surface landscapes on the Au NCs consisting of multiple functional groups such as carboxyl, amine, and hydroxy. Analysis based on NMR spectroscopy revealed that the hetero‐ligands on the NCs are well distributed with no ligand segregation. The unprecedented synthesis of multi‐thiolate‐protected Au25 NCs may further promote the practical applications of functional metal NCs.  相似文献   

16.
The structure of nanoparticles plays a critical role in dictating their material properties. Gold is well known to adopt face‐centered cubic (fcc) structure. Herein we report the first observation of a body‐centered cubic (bcc) gold nanocluster composed of 38 gold atoms protected by 20 adamantanethiolate ligands and two sulfido atoms ([Au38S2(SR)20], where R=C10H15) as revealed by single‐crystal X‐ray crystallography. This bcc structure is in striking contrast with the fcc structure of bulk gold and conventional Au nanoparticles, as well as the bi‐icosahedral structure of [Au38(SCH2CH2Ph)24]. The bcc nanocluster has a distinct HOMO–LUMO gap of ca. 1.5 eV, much larger than the gap (0.9 eV) of the bi‐icosahedral [Au38(SCH2CH2Ph)24]. The unique structure of the bcc gold nanocluster may be promising in catalytic applications.  相似文献   

17.
The synthesis and structure of atomically precise Au130?xAgx (average x=98) alloy nanoclusters protected by 55 ligands of 4‐tert‐butylbenzenethiolate are reported. This large alloy structure has a decahedral M54 (M=Au/Ag) core. The Au atoms are localized in the truncated Marks decahedron. In the core, a drum of Ag‐rich sites is found, which is enclosed by a Marks decahedral cage of Au‐rich sites. The surface is exclusively Ag?SR; X‐ray absorption fine structure analysis supports the absence of Au?S bonds. The optical absorption spectrum shows a strong peak at 523 nm, seemingly a plasmon peak, but fs spectroscopic analysis indicates its non‐plasmon nature. The non‐metallicity of the Au130?xAgx nanocluster has set up a benchmark to study the transition to metallic state in the size evolution of bimetallic nanoclusters. The localized Au/Ag binary architecture in such a large alloy nanocluster provides atomic‐level insights into the Au?Ag bonds in bimetallic nanoclusters.  相似文献   

18.
Herein, we report the synthesis and atomic structure of the cluster‐assembled [Au60Se2(Ph3P)10(SeR)15]+ material. Five icosahedral Au13 building blocks from a closed gold ring with Au–Se–Au linkages. Interestingly, two Se atoms (without the phenyl tail) locate in the center of the cluster, stabilized by the Se‐(Au)5 interactions. The ring‐like nanocluster is unprecedented in previous experimental and theoretical studies of gold nanocluster structures. In addition, our optical and electrochemical studies show that the electronic properties of the icosahedral Au13 units still remain unchanged in the penta‐twinned Au60 nanocluster, and this new material might be a promising in optical limiting material. This work offers a basis for deep understanding on controlling the cluster‐assembled materials for tailoring their functionalities.  相似文献   

19.
20.
Although face‐centered cubic (fcc), body‐centered cubic (bcc), hexagonal close‐packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix‐packed (fcc and non‐fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au49(2,4‐DMBT)27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single‐crystal X‐ray crystallography, which revealed that Au49(2,4‐DMBT)27 contains a unique Au34 kernel consisting of one quasi‐fcc‐structured Au21 and one non‐fcc‐structured Au13 unit (where 2,4‐DMBTH=2,4‐dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non‐fcc structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号