首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arsenite oxidation and arsenate determination by the molybdene blue method   总被引:3,自引:0,他引:3  
Based on the similarity in properties of arsenate and phosphate, the colorimetric method using the molybdene blue complex was tested in order to determine low As(V) concentration in waters. The influence of complex formation time, daylight, temperature and competitive anions (silicate and sulphate) upon complex formation was determined. Optimal complex formation was reached in 1 h at 20±1 °C and was slightly favoured when developed in daylight. The formation rate declined with decreasing reaction temperature and no influence of any of the competitive anions tested (at concentrations usually found in natural waters of granitic areas) was noted. The detection limit of this method was 20 μg As(V) l−1. This simple, fast and sensitive arsenic determination method is suitable for field analysis, especially for waters containing low levels of phosphate and organic matter. Through arsenate determination, this colorimetric method allowed the arsenite oxidation efficiency of five common industrial oxidants to be compared. H2O2 and MnO2(s) were not considered as effective oxidants as a high excess was necessary to ensure As(III) oxidation. NaOCl and KMnO4 were promising oxidants as they allowed complete arsenite oxidation with a small excess for NaOCl or even less than the electron stoichiometric ratio in the case of KMnO4. FeCl3 was the most effective oxidant among the reagents tested here.  相似文献   

2.
Abstract

We report the synthesis and characterization of cationic Au(III) complexes supported by nitrogen-based ligands. The syntheses are achieved by reacting Au(I) complexes [Au(N-Me-imidazole)2]+ and [Au(pyridine)(NHC)]+ with iodine(III) reagents PhI(OTf)(OAc) and [PhI(pyridine)2]2+ yielding a series of cationic gold(III) complexes. In contrast, reactions of phosphine ligated gold(I) complexes with iodine(III) reagents results in the oxidation of the phosphine ligand.  相似文献   

3.
New phosphorylating reagents 1 and 2 were prepared in three steps from 4-hydroxybenzaldehyde. They showed good efficiency in the solid phase synthesis of 5′-phosphate monoester nucleosides. End-phosphate DNA sequence synthesis demonstrated the efficiency of the new reagents (1 and 2) according to the general procedure of automated DNA synthesis. The oxidation of P(III) to P(V) and the removal of benzyl protecting groups were achieved in a single step by treatment with a 0.02 M I2/pyridine/H2O solution. Due to this one-pot treatment, it is possible to use the phosphorylating reagents (1 and 2) for the synthesis of base-sensitive ODNs. The reagents 1 and 2 are unique among phosphorylating reagents.  相似文献   

4.
Oxidation reactions have significant value in organic chemistry, having been in focus continuously due to the high efficiency in building up molecular complexity. In the past few decades, transition metal-catalyzed oxidation reactions have been significantly explored and have played important roles in organic synthesis. Compared to the widely-used oxidants, such as inorganic salts, peroxides, hypervalent iodine reagents and quinones, molecular oxygen (O2), which is natural, inexpensive, and environmentally friendly, is a highly appealing oxidant in academic and industry area for green and sustainable chemistry. Recently, significant advances have been made in palladium-catalyzed reactions using O2 as the oxidant. This critical review highlights some of the recent developments in molecular oxygen-involved Pd-catalyzed oxidation reactions with a focus on mechanistic strategies and new reaction developments.  相似文献   

5.
Organoiodine(V) reagents in organic synthesis   总被引:1,自引:0,他引:1  
Organohypervalent iodine reagents have attracted significant recent interest as versatile and environmentally benign oxidants with numerous applications in organic synthesis. This Perspective summarizes synthetic applications of hypervalent iodine(V) reagents: 2-iodoxybenzoic acid (IBX), Dess-Martin periodinane (DMP), pseudocyclic iodylarenes, and their recyclable polymer-supported analogues. Recent advances in the development of new catalytic systems based on the generation of hypervalent iodine species in situ are also overviewed.  相似文献   

6.
The mild and efficient nature of HIO3 and I2O5 as environmentally benign, commercially available, atom efficient, and safe reagents for the oxidation of alcohols has been demonstrated. Additionally, these oxidants are highly chemoselective, and effect smooth room temperature oxidation of various electron-rich alcohols with catalytic amounts of KBr in water.  相似文献   

7.
Summary. Primary phenylmethanols are selectively and efficiently oxidized to the corresponding aldehydes by the system C6H5IO/(C6H5)4PBr/CH2Cl2, T = 298 K under aerobic conditions. The use of the relatively stable iodosobenzene, an iodine(III) compound, in place of the usually employed and potentially explosive iodine(V) reagents, the easy work-up procedure, and the facile recycling of solvent and oxidant provides a convenient and environmentally benign oxidation method.  相似文献   

8.
Many iron‐containing enzymes involve metal–oxygen oxidants to carry out O2‐dependent transformation reactions. However, the selective oxidation of C H and CC bonds by biomimetic complexes using O2 remains a major challenge in bioinspired catalysis. The reactivity of iron–oxygen oxidants generated from an FeII–benzilate complex of a facial N3 ligand were thus investigated. The complex reacted with O2 to form a nucleophilic oxidant, whereas an electrophilic oxidant, intercepted by external substrates, was generated in the presence of a Lewis acid. Based on the mechanistic studies, a nucleophilic FeII–hydroperoxo species is proposed to form from the benzilate complex, which undergoes heterolytic O O bond cleavage in the presence of a Lewis acid to generate an FeIV–oxo–hydroxo oxidant. The electrophilic iron–oxygen oxidant selectively oxidizes sulfides to sulfoxides, alkenes to cis‐diols, and it hydroxylates the C H bonds of alkanes, including that of cyclohexane.  相似文献   

9.
Many iron‐containing enzymes involve metal–oxygen oxidants to carry out O2‐dependent transformation reactions. However, the selective oxidation of C? H and C?C bonds by biomimetic complexes using O2 remains a major challenge in bioinspired catalysis. The reactivity of iron–oxygen oxidants generated from an FeII–benzilate complex of a facial N3 ligand were thus investigated. The complex reacted with O2 to form a nucleophilic oxidant, whereas an electrophilic oxidant, intercepted by external substrates, was generated in the presence of a Lewis acid. Based on the mechanistic studies, a nucleophilic FeII–hydroperoxo species is proposed to form from the benzilate complex, which undergoes heterolytic O? O bond cleavage in the presence of a Lewis acid to generate an FeIV–oxo–hydroxo oxidant. The electrophilic iron–oxygen oxidant selectively oxidizes sulfides to sulfoxides, alkenes to cis‐diols, and it hydroxylates the C? H bonds of alkanes, including that of cyclohexane.  相似文献   

10.
Cytochrome P450 (CYP) heme-thiolate monooxygenases catalyze the hydroxylation of the C−H bonds of organic molecules. This reaction is initiated by a ferryl-oxo heme radical cation (Cpd I). These enzymes can also catalyze sulfoxidation reactions and the ferric-hydroperoxy complex (Cpd 0) and the Fe(III)-H2O2 complex have been proposed as alternative oxidants for this transformation. To investigate this, the oxidation of 4-alkylthiobenzoic acids and 4-methoxybenzoic acid by the CYP199A4 enzyme from Rhodopseudomonas palustris HaA2 was compared using both monooxygenase and peroxygenase pathways. By examining mutants at the mechanistically important, conserved acid alcohol-pair (D251N, T252A and T252E) the relative amounts of the reactive intermediates that would form in these reactions were disturbed. Substrate binding and X-ray crystal structures helped to understand changes in the activity and enabled an attempt to evaluate whether multiple oxidants can participate in these reactions. In peroxygenase reactions the T252E mutant had higher activity towards sulfoxidation than O-demethylation but in the monooxygenase reactions with the WT enzyme the activity of both reactions was similar. The peroxygenase activity of the T252A mutant was greater for sulfoxidation reactions than the WT enzyme, which is the reverse of the activity changes observed for O-demethylation. The monooxygenase activity and coupling efficiency of sulfoxidation and oxidative demethylation were reduced by similar degrees with the T252A mutant. These observations infer that while Cpd I is required for O-dealkylation, another oxidant may contribute to sulfoxidation. Based on the activity of the CYP199A4 mutants it is proposed that this is the Fe(III)-H2O2 complex which would be more abundant in the peroxide-driven reactions.  相似文献   

11.
Primary phenylmethanols are selectively and efficiently oxidized to the corresponding aldehydes by the system C6H5IO/(C6H5)4PBr/CH2Cl2, T = 298 K under aerobic conditions. The use of the relatively stable iodosobenzene, an iodine(III) compound, in place of the usually employed and potentially explosive iodine(V) reagents, the easy work-up procedure, and the facile recycling of solvent and oxidant provides a convenient and environmentally benign oxidation method.  相似文献   

12.
The activation of O2 is a key step in selective catalytic aerobic oxidation reactions mediated by transition metals. The bridging trinuclear palladium species, [(LPdII)33‐O)2]2+ (L=2,9‐dimethylphenanthroline), was identified during the [LPd(OAc)]2(OTf)2‐catalyzed aerobic oxidation of 1,2‐propanediol. Independent synthesis, structural characterization, and catalytic studies of the trinuclear compound show that it is a product of oxygen activation by reduced palladium species and is a competent intermediate in the catalytic aerobic oxidation of alcohols. The formation and catalytic activity of the trinuclear Pd3O2 species illuminates a multinuclear pathway for aerobic oxidation reactions catalyzed by Pd complexes.  相似文献   

13.
To reduce greenhouse gas emission from oil and gas production,it is essential to better convert methane to useful chemicals(rather) than to flare it.Conversion of methane to liquid oxygenates(mainly methanol) has attracted extensive attention and countless efforts have been made;however,running this reaction in a green,efficient,and practical way has remained elusive.The novel catalyst and oxidants play a critical role in activating methane and converting it to oxygenates(methanol).In this revie...  相似文献   

14.
Using light energy and O2 for the direct chemical oxidation of organic substrates is a major challenge. A limitation is the use of sacrificial electron donors to activate O2 by reductive quenching of the photosensitizer, generating undesirable side products. A reversible electron acceptor, methyl viologen, can act as electron shuttle to oxidatively quench the photosensitizer, [Ru(bpy)3]2+, generating the highly oxidized chromophore and the powerful reductant methyl‐viologen radical MV+.. MV+. can then reduce an iron(III) catalyst to the iron(II) form and concomitantly O2 to O2.? in an aqueous medium to generate an active iron(III)‐(hydro)peroxo species. The oxidized photosensitizer is reset to its ground state by oxidizing an alkene substrate to an alkenyl radical cation. Closing the loop, the reaction of the iron reactive intermediate with the substrate or its radical cation leads to the formation of two oxygenated compounds, the diol and the aldehyde following two different pathways.  相似文献   

15.
It is well known that zero-valent iron(ZVI) could catalyze the oxidation of various oxidants to realize the rapid oxidation removal of pollutants. However, in this study, we found that the addition of different oxidants could regulate the redox function of ZVI system. In three different co-treatment systems, the effects of different oxidizers(peroxymonosulfate(PMS), persulfate(PDS), hydrogen peroxide(H_2O_2))dosages on the ratios of oxidative degradation rate and reductive degradation rate of p-nitrophenol(PNP)were studied. The effect of the H~+ released from oxidizers and the generated reactive oxygen species(ROS) in ZVI/PMS, ZVI/PDS, ZVI/H_2O_2 systems were detailed discussed. Especially, the contribution of generated ROS for reductive degradation of PNP was quantified in the ZVI/H_2O_2 system. Based on the results of TOC removal, UV–vis absorption spectra, and intermediates concentration curves, it was found that the degradation of PNP changed from reduction to oxidation with the increase of oxidant proportion.When the molar ratio of ZVI to oxidizer equal to 100, PNP was mainly degraded by reduction accompanied by slight oxidation. Combined with the results of SEM-EDS and XPS, it was confirmed that the enhanced degradation of PNP under the addition of oxidant was mainly related to the generated ROS,the additional H~+, and the corrosion products of ZVI.  相似文献   

16.
The efficacy of the triperoxovanadium(V) complexes, A[V(O2)3]·3H2O (A = Na or K), as potential oxidants with respect to certain organic substrates has been investigated. Aqueous solutions of the complexes are basic (pH ca. 11) in nature. The complexes efficiently oxidise an α,β-unsaturated ketone to the corresponding epoxide and benzonitrile to benzamide. Such reactions are usually accomplished using alkaline-H2O2 reagent. The complexes are also capable of bringing about Bayer-Villiger-type oxidation and oxidise benzil to benzoic acid. The peroxo-depleted vanadium product, isolated after the oxidations, has been identified as a diperoxovanadate(V) complex, [VO(O2)2(H2O)].  相似文献   

17.
Binding energies (BE) of 18 pure vanadium compounds (V 2p3/2 niveau) were measured in selected oxygen and chlorine environments, linearity of BE vs. oxidation states scrutinized and appropriate model compounds chosen as comparative standards. The general trend is an increase of BE with formal oxidation state; in particular, it could be counterbalanced by electron donating/withdrawing ligands on the V atom. A graphical (computerized) background substraction method was utilized to remove an interfering O 1s satellite peak and to enhance accuracy of BE values in surface compounds. BEs of (?Si? O)3V?O (I), (?Si? O)3V (II), and (?Si? O)3V? (O2) (III) were determined. By comparison to standards positive BE shifts of about 2.1 eV were derived indicating the strong electron withdrawing (“electron sink”) effect of the support on V in surface compounds. This is the first reported ESCA data on a surface peroxo complex, (III). Some implications of the results are also discussed.  相似文献   

18.
《中国化学快报》2022,33(11):4834-4837
Herein we report a new general method for one-step synthesis of four kinds of fluoroiodane(III) reagents by treating the corresponding aryl iodides with silver difluoride (AgF2). This is the first method applicable for the synthesis of all four fluoroiodane(III) reagents including p-iodotoluene difluoride (1), fluoro-benziodoxole (2), fluoro-benziodoxolone (3), and fluoro-N-acetylbenziodazole (4). AgF2 was firstly employed in the direct oxidative fluorination of iodobenzene and thus has shown its outstanding oxidation and fluorine-transfer ability. The use of AgF2 has improved the synthesis of fluoroiodane(III) reagents by shortening the reaction steps, avoiding the use of hazardous reagents, and simplifying the experimental operations. It was worth noting that we have developed the first one-step direct synthetic method for 3, while 3 can only be synthesized through Cl→F ligand exchange reaction previously.  相似文献   

19.
A new paradigm of the oxidative decarboxylative sulfono functionalization of cinnamic acids with sulfinate salts mediated by K2S2O8 under aerobic conditions to afford synthetically and biologically relevant β-keto sulfones has been described. It is the first report on the transition-metal-free synthesis of β-keto sulfones from cinnamic acids, which employs environmentally benign, readily available and inexpensive starting materials and oxidants, viz. air and K2S2O8.  相似文献   

20.
In the V(V)H2O2/AcOH system, C5–C20 n-alkanes, isooctane, and neohexane undergo oxidation to ketones and alcohols; the oxidation products of branched alkanes are indicative of a C–C bond cleavage in these substrates. A concept is developed, according to which the peroxo complexes of vanadium(V) are responsible for alkane oxidation. These complexes can transfer the oxygen atom or the O radical cation to a substrate. The formation of nitrous oxide was found in the oxidation of molecular nitrogen in the H2O2/V(V)/CF3COOH system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号