首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, we describe our full investigations into the synthesis of the peptide‐derived natural product plantazolicin A, a compound that demonstrates promising selective activity against the causative agent of anthrax toxicity, and its biosynthetic precursor plantazolicin B. This report particularly focuses on the challenging preparation of the arginine containing thiazole fragment, including the development of a robust, high yielding procedure that avoids the use of sulfurating agents. Extensive studies on the design of a coherent protecting group strategy and the establishment of a step‐efficient dicyclization/oxidation approach allowed high levels of convergence for the construction of the oxazole fragments. This has led to a unified, highly convergent synthesis for both plantazolicin A and B.  相似文献   

2.
Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody–drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products.  相似文献   

3.
The development process for syringolin A analogues having improved proteasome inhibitory and antitumor activity is described. The strategy was to first establish a convergent synthesis of syringolin A using a rare intramolecular Ugi three‐component reaction in the last stage of the synthesis, so as to gain access toa set of structure‐based analogues. The inhibitory activity of chymotrypsin‐like activity of 20S proteasome was largely improved by targeting the S3 subsite of the β5 subunit. Cytotoxic activity was also improved by installing the membrane‐permeable substituent. These biological properties are comparable to those of bortezomib, a clinically used first‐line proteasome inhibitor.  相似文献   

4.
The macrocyclic antibiotic mangrolide A has been described to exhibit potent activity against a number of clinically important Gram‐negative pathogens. Reported is the first enantioselective total synthesis of mangrolide A and derivatives. Salient features of this synthesis include a highly convergent macrocycle preparation, stereoselective synthesis of the disaccharide moiety, and two β‐selective glycosylations. The synthesis of mangrolide A and its analogues enabled the re‐examination of its activity against bacterial pathogens, and only minimal activity was observed.  相似文献   

5.
Mimicking nature synthetically : The successful development of multistep stereoselective syntheses gives access to natural product inspired compound collections having carbo‐, oxa‐,and azacyclic scaffold structures which promise to provide sources for new reagents in medicinal chemistry and chemical biology research.

  相似文献   


6.
Plantazolicin A, a linear decacyclic natural product, exhibits desirable selective activity against the causative agent of anthrax toxicity. The total synthesis of plantazolicin A and its biosynthetic precursor plantazolicin B was successfully achieved by an efficient, unified, and highly convergent route featuring dicyclizations to form 2,4‐concatenated oxazoles and the mild synthesis of thiazoles from natural amino acids. This report represents the first synthesis of plantazolicin B and includes the first complete characterization data for both natural products.  相似文献   

7.
8.
9.
10.
11.
12.
The total synthesis of polygalolide A, a secondary metabolite that was isolated from a Chinese medicinal plant, is reported. A key issue in this synthesis was construction of an oxabicyclo[3.2.1] skeleton, which was solved by the development of an intramolecular Ferrier‐type C‐glycosylation of a glucal with siloxyfuran as an internal nucleophile. The substrate was prepared from D ‐glucal by the introduction of trimethylsilylacetylene and siloxyfuran groups. Although C‐glycosylation did not occur under the conditions found from model experiments, further examination revealed that the combination of trimethylsilyl trifluoromethanesulfonate (TMSOTf) and 2,4,6‐collidine successfully afforded the desired product as a single diastereomer. The siloxy group at the C3 position played a crucial role in the stereocontrol of this reaction. The product was further transformed into a tetracyclic compound as follows: The vinyl ether and acetylenic moieties were reduced and the siloxy group was removed with a Barton–McCombie reaction. The construction of the six‐membered ether and the γ‐lactone provided the tetracyclic compound. Finally, a phenolic moiety was introduced by using a Mukaiyama aldol reaction to furnish polygalolide A.  相似文献   

13.
We disclose the syntheses of (+)‐bromodanicalipin A as well as (±)‐fluorodanicalipin A. The relative configuration and ground‐state conformation in solution of both molecules was secured by J‐based configuration analysis which revealed that these are identical to natural danicalipin A. Furthermore, preliminary toxicological investigations suggest that the adverse effect of danicalipin A may be due to the lipophilicity of the halogens.  相似文献   

14.
15.
Leucosceptroids A and B are sesterterpenoids with potent antifeedant and antifungal activities. A more efficient gram‐scale total synthesis of leucosceptroid B and the first total synthesis of leucosceptroid A are presented. The key transformations include an aldol reaction between a substituted dihydrofuranone and an (S)‐citronellal‐derived aldehyde, a SmI2‐mediated intramolecular ketyl–olefin radical cyclization, and final‐stage alcohol oxidation.  相似文献   

16.
Fidaxomicin ( 1 , tiacumicin B, lipiarmycin A3) is a marketed antibiotic that is used in the treatment of Clostridium difficile infections. Based on the analysis of a cryo-EM structure of fidaxomicin binding to its target enzyme (RNA-polymerase), a cation-π interaction of the aromatic moiety with an arginine residue was identified. Therefore, the variation of the substituents and concurrently changing the electronic properties of the aryl moiety represents an interesting strategy in the search for new fidaxomicin analogs. Herein, we report the first semisynthetic access to new fidaxomicin analogs with varying halogen substituents through a Pd-catalyzed hydrodechlorination reaction. Subsequent iodination gave access to the first iodo-fidaxomicin derivatives, which matched or improved antibacterial properties compared to fidaxomicin against Mycobacterium tuberculosis and Staphylococcus aureus ATCC 29213.  相似文献   

17.
18.
19.
Fidaxomicin, also known as tiacumicin B or lipiarmycin A3, is a novel macrocyclic antibiotic that is used in hospitals for the treatment of Clostridium difficile infections. This natural product has also been shown to have excellent bactericidal activity against multidrug‐resistant Mycobacterium tuberculosis. In spite of its attractive biological activity, no total synthesis has been reported to date. The enantioselective synthesis of the central 18‐membered macrolactone is reported herein. The key reactions include ring‐closing metathesis between a terminal olefin and a dienoate moiety for macrocyclization, a vinylogous Mukaiyama aldol reaction, and a Stille coupling reaction of sterically demanding substrates. The retrosynthesis involves three medium‐sized fragments, thus leading to a flexible yet convergent synthetic route.  相似文献   

20.
The total synthesis of siladenoserinol A, an inhibitor of the p53–Hdm2 interaction, has been achieved. AuCl3‐catalyzed hydroalkoxylation of an alkynoate derivative smoothly and regioselectively proceeded to afford a bicycloketal in excellent yield. A glycerophosphocholine moiety was successfully introduced through the Horner–Wadsworth–Emmons reaction using an originally developed phosphonoacetate derivative. Finally, removal of the acid‐labile protecting groups, followed by regioselective sulfamate formation of the serinol moiety afforded the desired siladenoserinol A, and benzoyl and desulfamated analogues were also successfully synthesized. Biological evaluation showed that the sulfamate is essential for biological activity, and modification of the acyl group on the bicycloketal can improve the inhibitory activity against the p53–Hdm2 interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号