首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combinatorial antitumor therapies using different combinations of drugs and genes are emerging as promising ways to overcome drug resistance, which is a major cause for the failure of cancer treatment. However, dramatic pharmacokinetic differences of drugs greatly impede their combined use in cancer therapy, raising the demand for drug delivery systems (DDSs) for tumor treatment. By employing fluorescent dithiomaleimide (DTM) as a linker, we conjugate two paclitaxel (PTX) molecules with a floxuridine (FdU)‐integrated antisense oligonucleotide (termed chemogene) to form a drug–chemogene conjugate. This PTX–chemogene conjugate can self‐assemble into a spherical nucleic acid (SNA)‐like micellular nanoparticle as a carrier‐free DDS, which knocks down the expression of P‐glycoprotein and subsequently releases FdU and PTX to exert a synergistic antitumor effect and greatly inhibit tumor growth.  相似文献   

2.
A highly effective and convenient “bis‐click” strategy was developed for the template‐independent circularization of single‐stranded oligonucleotides by employing copper(I)‐assisted azide–alkyne cycloaddition. Terminal triple bonds were incorporated at both ends of linear oligonucleotides. Alkynylated 7‐deaza‐2′‐deoxyadenosine and 2′‐deoxyuridine residues with different side chains were used in solid‐phase synthesis with phosphoramidite chemistry. The bis‐click ligation of linear 9‐ to 36‐mer oligonucleotides with 1,4‐bis(azidomethyl)benzene afforded circular DNA in a simple and selective way; azido modification of the oligonucleotide was not necessary. Short ethynyl side chains were compatible with the circularization of longer oligonucleotides, whereas octadiynyl residues were used for short 9‐mers. Compared with linear duplexes, circular bis‐click constructs exhibit a significantly increased duplex stability over their linear counterparts. The intramolecular bis‐click ligation protocol is not limited to DNA, but may also be suitable for the construction of other macrocycles, such as circular RNAs, peptides, or polysaccharides.  相似文献   

3.
2′‐Deoxy‐1‐methyladenosine was incorporated into synthetic oligonucleotides by phosphoramidite chemistry. Chloroacetyl protecting group and controlled anhydrous deprotection conditions were used to avoid Dimroth rearrangement. Hybridization studies of intramolecular duplexes showed that introduction of a modified residue into the loop region of the oligonucleotide hairpin increases the melting temperature. It was shown that modified oligonucleotides may be easily transformed into oligonucleotides containing 2′‐deoxy‐N6‐methyladenosine.  相似文献   

4.
An analytical model to describe diffusion of oligonucleotides from stable hydrogel beads is developed and experimentally verified. The synthesized alginate beads are Fe3+‐cross‐linked and polyelectrolyte‐doped for uniformity and stability at physiological pH. Data on diffusion of oligonucleotides from inside the beads provide physical insights into the volume nature of the immobilization of a fraction of oligonucleotides due to polyelectrolyte cross‐linking, that is, the absence of a surface‐layer barrier in this case. Furthermore, the results suggest a new simple approach to measuring the diffusion coefficient of mobile oligonucleotide molecules inside hydrogels. The considered alginate beads provide a model for a well‐defined component in drug‐release systems and for the oligonucleotide‐release transduction steps in drug‐delivering and biocomputing applications. This is illustrated by destabilizing the beads with citrate, which induces full oligonucleotide release with nondiffusional kinetics.  相似文献   

5.
A fast, high‐yielding and reliable method for the synthesis of DNA‐ and RNA 5′‐triphosphates is reported. After synthesizing DNA or RNA oligonucleotides by automated oligonucleotide synthesis, 5‐chloro‐saligenyl‐N,N‐diisopropylphosphoramidite was coupled to the 5′‐end. Oxidation of the formed 5′‐phosphite using the same oxidizing reagent used in standard oligonucleotide synthesis led to 5′‐cycloSal‐oligonucleotides. Reaction of the support‐bonded 5′‐cycloSal‐oligonucleotide with pyrophosphate yielded the corresponding 5′‐triphosphates. The 5′‐triphosphorylated DNA and RNA oligonucleotides were obtained after cleavage from the support in high purity and excellent yields. The whole reaction sequence was adapted to be used on a standard oligonucleotide synthesizer.  相似文献   

6.
Structural modification at the 2′‐O‐position of riboses in oligonucleotide therapeutics is of critical importance for their use as drugs. To date, the methoxyethyl (MOE) substituent is the most important and features in dozens of antisense oligonucleotides that have been tested in clinical trials. Yet, the search for new improved modifications continues in a quest for increased oligonucleotide potency, improved transport in vivo and favorable metabolism. Recently, we described how the conjugation of spermine groups to pyrimidines in oligonucleotides vastly increases their affinity for complementary RNAs through accelerated binding kinetics. Here we describe how spermines can be linked to the exocyclic amino groups of cytidines in MOE‐oligonucleotides employing a straightforward ‘convertible nucleoside approach’ during solid phase synthesis. Singly‐ or doubly‐modified oligonucleotides show greatly enhanced affinity for complementary RNA, with potential for a new generation of MOE‐based oligonucleotide drugs.  相似文献   

7.
An efficient method for synthesis of oligonucleotide 5′‐conjugates through amide‐bond formation on solid phase is described. Protected oligonucleotides containing a 5′‐carboxylic acid function were obtained by use of a novel non‐nucleosidic phosphoramidite building block, where the carboxylic acid moiety was protected by a 2‐chlorotrityl group. The protecting group is stable to the phosphoramidite coupling conditions used in solid‐phase oligonucleotide assembly, but is easily deprotected by mild acidic treatment. The protecting group may be removed also by ammonolysis. 5′‐Carboxylate‐modified oligonucleotides were efficiently conjugated on solid support under normal peptide‐coupling conditions to various amines or to the N‐termini of small peptides to yield products of high purity. The method is well‐suited in principle for the synthesis of peptide‐oligonucleotide conjugates containing an amide linkage between the 5′‐end of an oligonucleotide and the N‐terminus of a peptide.  相似文献   

8.
Disulfide dithymidines linked 3′–5′ or 3′–6′ were synthesized and incorporated into oligonucleotides through a combined phosphotriester and phosphoramidite solid‐phase oligonucleotide synthesis approach. The disulfide links are cleaved and formed reversibly in the presence of thiols and oligonucleotides. This link was shown to be sequence‐adaptive in response to given templates in the presence of mercaptoethanol. The artificial 3′–5′ and 3′–6′ disulfide link was tolerated by polymerases in the polymerase chain reaction (PCR). By using sequencing analysis, we show that single mutations frequently occurred randomly in the amplification products of the PCR.  相似文献   

9.
Disulfide dithymidines linked 3′–5′ or 3′–6′ were synthesized and incorporated into oligonucleotides through a combined phosphotriester and phosphoramidite solid‐phase oligonucleotide synthesis approach. The disulfide links are cleaved and formed reversibly in the presence of thiols and oligonucleotides. This link was shown to be sequence‐adaptive in response to given templates in the presence of mercaptoethanol. The artificial 3′–5′ and 3′–6′ disulfide link was tolerated by polymerases in the polymerase chain reaction (PCR). By using sequencing analysis, we show that single mutations frequently occurred randomly in the amplification products of the PCR.  相似文献   

10.
An oligonucleotide of triazole‐linked RNA (TLRNA) was synthesized by performing consecutive copper‐catalyzed azide‐alkyne cycloaddition reactions for elongation. The reaction conditions that had been optimized for the synthesis of 3‐mer TLRNA were found to be inappropriate for longer oligonucleotides, and the conditions were reoptimized for the solid‐phase synthesis of an 11‐mer TLRNA oligonucleotide. Duplex formation of the 11‐mer TLRNA oligonucleotide was examined with the complementary oligonucleotide of natural RNA to reveal the effects of the 2′‐OH groups on the duplex stability.  相似文献   

11.
While the occurrence of desulfurization of phosphorothioate oligonucleotides in solution is well established, this study represents the first attempt to investigate the basis of the unexpected desulfurization via the net sulfur‐by‐oxygen (S‐O) replacement during negative electrospray ionization (ESI). The current work, facilitated by quantitative mass deconvolution, demonstrates that considerable desulfurization can take place even under common negative ESI operating conditions. The extent of desulfurization is dependent on the molar phosphorothioate oligonucleotide‐to‐hydroxyl radical ratio, which is consistent with the corona discharge‐induced origin of the hydroxyl radical leading to the S‐O replacement. This hypothesis is supported by the fact that an increase of the high‐performance liquid chromatography (HPLC) flow rate and the on‐column concentration of a phosphorothioate oligonucleotide, as well as a decrease of the electrospray voltage reduce the degree of desulfurization. Comparative LC‐tandem mass spectrometry (MS/MS) sequencing of a phosphorothioate oligonucleotide and its corresponding desulfurization product revealed evidence that the S‐O replacement occurs at multiple phosphorothioate internucleotide linkage sites. In practice, the most convenient and effective strategy for minimizing this P = O artifact is to increase the LC flow rate and the on‐column concentration of phosphorothioate oligonucleotides. Another approach to mitigate possible detrimental effects of the undesired desulfurization is to operate the ESI source at a very low electrospray voltage to diminish the corona discharge; however this will significantly compromise sensitivity when analyzing the low‐level P = O impurities in phosphorothioate oligonucleotides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The short sequence related to hepatitis C virus (HCV1) is detected by a label‐free DNA hybridization biosensor. The sensor relies on the immobilization of a 20‐mer oligonucleotide containing 2 guanine and 11 cytosine bases denoted PHCV1 as probe on the pencil graphite electrode (PGE). The hybridization event was monitored by differential pulse voltammetry (DPV) using the guanine signal. The selectivity of the biosensor was studied using some noncomplementary oligonucleotides. Diagnostic performance of the biosensor is described and the detection limit was found to be 6.5 nM.  相似文献   

13.
The interaction between N‐(4‐ethoxyphenyl)‐N′‐(4‐antipyrinyl)thiourea (EPAT) and bovine serum albumin (BSA) was studied by fluorescence spectroscopy in combination with UV absorption spectroscopy. The intrinsic fluorescence of bovine serum albumin was quenched by EPAT through a static quenching procedure. The binding constants of EPAT with BSA were estimated according to the fluorescence quenching results at different temperatures. The thermodynamic parameters: enthalpy change (ΔH) and entropy change (ΔS) were calculated to be ?10.69 kJ/mol and 42.64 J·mol?1·K?1 according to thermodynamic equations, respectively, and indicating that the binding force was suggested to be mainly a hydrophobic force. The effect of common ions on the binding constant was also investigated. A new fluorescence spectroscopy assay of the proteins was presented in this paper. The determination results of the proteins in bovine serum by means of this method were very close to those obtained using Coomassie Brilliant Blue G‐250 colorimetry.  相似文献   

14.
Under physiological conditions, interaction between N,N′‐di(4‐chlorophenyl)thiourea synthesized and human serum albumin was investigated by using fluorescence spectroscopy and UV absorption spectrum. The intrinsic fluorescence of human serum albumin was quenched by N,N′‐di(4‐chlorophenyl)‐thiourea through a static quenching procedure. The binding constants (K) at 14 °C and 24 °C were obtained, and the values were 2.541 × 105 M?1 and 2.021 × 105 M?1, respectively. Thermodynamic parameter enthalpy change (ΔH) and entropy change (ΔS) were calculated to be ‐16.19 KJ/mol and 47.05 J·mol1·K?1, respectively, which indicated that hydrophobic force played a major role in interaction. The binding distance was evaluated on the basis of the theory of Föster energy transfer. The effects of various metal ions on the binding constants of N,N′‐di(4‐chlorophenyl)thiourea with human serum albumin were studied. A synchronous fluorescence technique for determination of human serum albumin was developed, and the method was successfully applied to the detection of HSA in human serum samples.  相似文献   

15.
A DNA biosensor for the detection of specific oligonucleotide sequences of Avian Influenza Virus type H5N1 has been proposed. The NH2‐ssDNA probe was deposited onto a gold electrode surface to form an amide bond between the carboxyl group of thioacid and the amino group from ssDNA probe. The signals generated as a result of hybridization were registered in square wave voltammetry and electrochemical impedance spectroscopy in the presence of [Fe(CN)6]3?/4? as a redox marker. The genosensor is capable to determine 20‐mer and 180‐bp (PCR products) oligonucleotides complementary sequences with detection limit in the fM range. The genosensor displays good selectivity and sensitivity. The 20‐mer as well as 180‐bp oligonucleotides without a complementary sequence generate very low signal.  相似文献   

16.
In the context of Eschenmoser's work on pyranosyl‐RNA (‘p‐RNA’), we investigated the synthesis and base‐pairing properties of the 5‐methylisocytidine derivative. The previously determined clear‐cut restrictions of base‐pairing modes of p‐RNA had led to the expectation that a 5‐methylisocytosine β‐D ‐ribopyranosyl (= D ‐pr(MeisoC)) based (4′ → 2′)‐oligonucleotide would pair inter alia with D ‐pr(isoG) and L ‐pr(G) based oligonucleotides (D ‐pr and L ‐pr = pyranose form of D ‐ and L ‐ribose, resp.). Remarkably, we could not observe pairing with the D ‐pr(isoG) oligonucleotide but only with the L ‐pr(G) oligonucleotide. Our interpretation concludes that this – at first hand surprising – observation is caused by a change in the nucleosidic torsion angle specific for isoC.  相似文献   

17.
The non‐enzymatic replication of the primordial genetic material is thought to have enabled the evolution of early forms of RNA‐based life. However, the replication of oligonucleotides long enough to encode catalytic functions is problematic due to the low efficiency of template copying with mononucleotides. We show that template‐directed ligation can assemble long RNAs from shorter oligonucleotides, which would be easier to replicate. The rate of ligation can be greatly enhanced by employing a 3′‐amino group at the 3′‐end of each oligonucleotide, in combination with an N‐alkyl imidazole organocatalyst. These modifications enable the copying of RNA templates by the multistep ligation of tetranucleotide building blocks, as well as the assembly of long oligonucleotides using short splint oligonucleotides. We also demonstrate the formation of long oligonucleotides inside model prebiotic vesicles, which suggests a potential route to the assembly of artificial cells capable of evolution.  相似文献   

18.
Correct sequences are prerequisite for quality control of therapeutic oligonucleotides. However, there is no definitive method available for determining sequences of highly modified therapeutic RNAs, and thereby, most of the oligonucleotides have been used clinically without direct sequence determination. In this study, we developed a novel sequencing method called ‘hydrophobic tag sequencing’. Highly modified oligonucleotides are sequenced by partially digesting oligonucleotides conjugated with a 5′‐hydrophobic tag, followed by liquid chromatography–mass spectrometry analysis. 5′‐Hydrophobic tag‐printed fragments (5′‐tag degradates) can be separated in order of their molecular masses from tag‐free oligonucleotides by reversed‐phase liquid chromatography. As models for the sequencing, the anti‐VEGF aptamer (Macugen) and the highly modified 38‐mer RNA sequences were analyzed under blind conditions. Most nucleotides were identified from the molecular weight of hydrophobic 5′‐tag degradates calculated from monoisotopic mass in simple full mass data. When monoisotopic mass could not be assigned, the nucleotide was estimated using the molecular weight of the most abundant mass. The sequences of Macugen and 38‐mer RNA perfectly matched the theoretical sequences. The hydrophobic tag sequencing worked well to obtain simple full mass data, resulting in accurate and clear sequencing. The present study provides for the first time a de novo sequencing technology for highly modified RNAs and contributes to quality control of therapeutic oligonucleotides. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Four simple agarose derivatives have been synthesized: 3-(Z-pyridylsulfido)-2-hydroxypropyl- 3-(2-pyridyloxy)-2-hydroxypropyl- 3-(phenylsulfido)-2-hydroxypropyl-, and 3-(phenyloxy)-2-hydroxypropylagarose. Their affinities for serum proteins have been studied in the presence and absence of water-structuring salt. About 50% of the proteins, among them immunoglobulins and α2-macroglobulin, but not albumin, were non-covalently adsorbed to the PyS-gel in buffer containing 0.5 M K2SO4. These proteins are the same as those adsorbed to the so-called thiophilic gel, T-gel (5), but there are some additional proteins found in the adsorbate that strongly indicate a specific influence on the protein adsorption exerted by the π-electron system of the pyridine residue. The thio-ether sulfur appears to be a necessary structural requirement for the characteristic adsorption behaviour. Thiophilic vs. hydrophobic ligand-protein interaction is discussed.  相似文献   

20.
The interaction between DNA and surfactant has both biological and technological significances. Recently, we reported for the first time that oligo d(C)25 can induce single‐chained cationic surfactant molecules to aggregate into vesicles. In this article, we studied systematically the formation of vesicles from traditional single‐chained cationic surfactant molecules in the presence of a series of oligonucleotides and found that the facilitation efficiency of oligonucleotide on vesicle formation depends on its size and base composition. Oligo d(T)n cannot induce vesicle formation, whereas the other oligonucleotides can. Moreover, the oligonucleotide with a bigger size or with a hairpin structure favors vesicle formation more, and the increases in the size of the head group and/or the length of the alkyl group of surfactant decrease the facilitation efficiency of oligonucleotide. Since so far, there is very limited report about the vesicle formation in DNA/single‐chained cationic surfactant solution, this study could be expected to increase the efficiency and applicability for DNA/amphiphile system. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 434–449, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号