首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deployment of high‐energy‐density lithium‐metal batteries has been greatly impeded by Li dendrite growth and safety concerns originating from flammable liquid electrolytes. Herein, we report a stable quasi‐solid‐state Li metal battery with a deep eutectic solvent (DES)‐based self‐healing polymer (DSP) electrolyte. This electrolyte was fabricated in a facile manner by in situ copolymerization of 2‐(3‐(6‐methyl‐4‐oxo‐1,4‐dihydropyrimidin‐2‐yl)ureido)ethyl methacrylate (UPyMA) and pentaerythritol tetraacrylate (PETEA) monomers in a DES‐based electrolyte containing fluoroethylene carbonate (FEC) as an additive. The well‐designed DSP electrolyte simultaneously possesses non‐flammability, high ionic conductivity and electrochemical stability, and dendrite‐free Li plating. When applied in Li metal batteries with a LiMn2O4 cathode, the DSP electrolyte effectively suppressed manganese dissolution from the cathode and enabled high‐capacity and a long lifespan at room and elevated temperatures.  相似文献   

2.
Aluminum metal is a promising anode material for next generation rechargeable batteries owing to its abundance, potentially dendrite‐free deposition, and high capacity. The rechargeable aluminum/sulfur (Al/S) battery is of great interest owing to its high energy density (1340 Wh kg?1) and low cost. However, Al/S chemistry suffers poor reversibility owing to the difficulty of oxidizing AlSx. Herein, we demonstrate the first reversible Al/S battery in ionic‐liquid electrolyte with an activated carbon cloth/sulfur composite cathode. Electrochemical, spectroscopic, and microscopic results suggest that sulfur undergoes a solid‐state conversion reaction in the electrolyte. Kinetics analysis identifies that the slow solid‐state sulfur conversion reaction causes large voltage hysteresis and limits the energy efficiency of the system.  相似文献   

3.
The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3‐dimethylacrylic acid lithium) (PDAALi)‐coated glass fiber membrane. The well‐designed HMPE simultaneously exhibits high ionic conductivity (2.24×10?3 S cm?1 at 25 °C), near‐single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as‐developed Li‐I batteries with high capacity and long cycling stability.  相似文献   

4.
Of the various beyond‐lithium‐ion batteries, lithium–sulfur (Li‐S) batteries were recently reported as possibly being the closest to market. However, its theoretically high energy density makes it potentially hazardous under conditions of abuse. Therefore, addressing the safety issues of Li‐S cells is necessary before they can be used in practical applications. Here, we report a concept to build a safe and highly efficient Li‐S battery with a flame‐inhibiting electrolyte and a sulfur‐based composite cathode. The flame retardant not only makes the carbonates nonflammable but also dramatically enhances the electrochemical performance of the sulfur‐based composite cathode, without an apparent capacity decline over 750 cycles, and with a capacity greater than 800 mA h?1 g?1(sulfur) at a rate of 10 C.  相似文献   

5.
The cathodic reactions in Li–S batteries can be divided into two steps. Firstly, elemental sulfur is transformed into long‐chain polysulfides (S8?Li2S4), which are highly soluble in the electrolyte. Next, long‐chain polysulfides undergo nucleation reaction and convert into solid‐state Li2S2 and Li2S (Li2S4?Li2S) by slow processes. As a result, the second‐step of the electrochemical reaction hinders the high‐rate application of Li–S batteries. In this report, the kinetics of the sulfur/long‐chain‐polysulfide redox couple (theoretical capacity=419 mA h g?1) are experimentally demonstrated to be very fast in the Li–S system. A Li–S cell with a blended carbon interlayer retains excellent cycle stability and possesses a high percentage of active material utilization over 250 cycles at high C rates. The meso‐/micropores in the interlayer are responsible for accommodating the shuttling polysulfides and offering sufficient electrolyte accessibility. Therefore, utilizing the sulfur/long‐chain polysulfide redox couple with an efficient interlayer configuration in Li–S batteries may be a promising choice for high‐power applications.  相似文献   

6.
A three‐dimensional (3D) hierarchical carbon–sulfur nanocomposite that is useful as a high‐performance cathode for rechargeable lithium–sulfur batteries is reported. The 3D hierarchically ordered porous carbon (HOPC) with mesoporous walls and interconnected macropores was prepared by in situ self‐assembly of colloidal polymer and silica spheres with sucrose as the carbon source. The obtained porous carbon possesses a large specific surface area and pore volume with narrow mesopore size distribution, and acts as a host and conducting framework to contain highly dispersed elemental sulfur. Electrochemical tests reveal that the HOPC/S nanocomposite with well‐defined nanostructure delivers a high initial specific capacity up to 1193 mAh g?1 and a stable capacity of 884 mAh g?1 after 50 cycles at 0.1 C. In addition, the HOPC/S nanocomposite exhibits high reversible capacity at high rates. The excellent electrochemical performance is attributed exclusively to the beneficial integration of the mesopores for the electrochemical reaction and macropores for ion transport. The mesoporous walls of the HOPC act as solvent‐restricted reactors for the redox reaction of sulfur and aid in suppressing the diffusion of polysulfide species into the electrolyte. The “open” ordered interconnected macropores and windows facilitate transportation of electrolyte and solvated lithium ions during the charge/discharge process. These results show that nanostructured carbon with hierarchical pore distribution could be a promising scaffold for encapsulating sulfur to approach high specific capacity and energy density with long cycling performance.  相似文献   

7.
The development of energy‐storage devices has received increasing attention as a transformative technology to realize a low‐carbon economy and sustainable energy supply. Lithium–sulfur (Li–S) batteries are considered to be one of the most promising next‐generation energy‐storage devices due to their ultrahigh energy density. Despite the extraordinary progress in the last few years, the actual energy density of Li–S batteries is still far from satisfactory to meet the demand for practical applications. Considering the sulfur electrochemistry is highly dependent on solid‐liquid‐solid multi‐phase conversion, the electrolyte amount plays a primary role in the practical performances of Li–S cells. Therefore, a lean electrolyte volume with low electrolyte/sulfur ratio is essential for practical Li–S batteries, yet under these conditions it is highly challenging to achieve acceptable electrochemical performances regarding sulfur kinetics, discharge capacity, Coulombic efficiency, and cycling stability especially for high‐sulfur‐loading cathodes. In this Review, the impact of the electrolyte/sulfur ratio on the actual energy density and the economic cost of Li–S batteries is addressed. Challenges and recent progress are presented in terms of the sulfur electrochemical processes: the dissolution–precipitation conversion and the solid–solid multi‐phasic transition. Finally, prospects of future lean‐electrolyte Li–S battery design and engineering are discussed.  相似文献   

8.
Emerging rechargeable sodium‐ion storage systems—sodium‐ion and room‐temperature sodium–sulfur (RT‐NaS) batteries—are gaining extensive research interest as low‐cost options for large‐scale energy‐storage applications. Owing to their abundance, easy accessibility, and unique physical and chemical properties, sulfur‐based materials, in particular metal sulfides (MSx) and elemental sulfur (S), are currently regarded as promising electrode candidates for Na‐storage technologies with high capacity and excellent redox reversibility based on multielectron conversion reactions. Here, we present current understanding of Na‐storage mechanisms of the S‐based electrode materials. Recent progress and strategies for improving electronic conductivity and tolerating volume variations of the MSx anodes in Na‐ion batteries are reviewed. In addition, current advances on S cathodes in RT‐NaS batteries are presented. We outline a novel emerging concept of integrating MSx electrocatalysts into conventional carbonaceous matrices as effective polarized S hosts in RT‐NaS batteries as well. This comprehensive progress report could provide guidance for research toward the development of S‐based materials for the future Na‐storage techniques.  相似文献   

9.
Electrolyte modulation simultaneously suppresses polysulfide the shuttle effect and lithium dendrite formation of lithium–sulfur (Li‐S) batteries. However, the sluggish S redox kinetics, especially under high S loading and lean electrolyte operation, has been ignored, which dramatically limits the cycle life and energy density of practical Li‐S pouch cells. Herein, we demonstrate that a rational combination of selenium doping, core–shell hollow host structure, and fluorinated ether electrolytes enables ultrastable Li stripping/plating and essentially no polysulfide shuttle as well as fast redox kinetics. Thus, high areal capacity (>4 mAh cm?2) with excellent cycle stability and Coulombic efficiency were both demonstrated in Li metal anode and thick S cathode (4.5 mg cm?2) with a low electrolyte/sulfur ratio (10 μL mg?1). This research further demonstrates a durable Li‐Se/S pouch cell with high specific capacity, validating the potential practical applications.  相似文献   

10.
A unique sodium sulfide (Na2S) cathode is developed, which will allow the use of sodium‐free anodes for room‐temperature sodium–sulfur (Na–S) batteries. To overcome the “inert” nature of the Na2S, a special cathode structure is developed by spreading the multi‐walled carbon nanotube (MWCNT)‐wrapped Na2S particles onto MWCNT fabrics. Spectroscopic and electrochemical analyses reveal a series of polysulfide intermediates involved in the charge/discharge of the cell. The Na–S battery prepared in full discharge state with the Na2S/MWCNT cathode provides a remarkable capacity of 500 A h kg?1 (based on sulfur mass) after 50 cycles.  相似文献   

11.
The lithium–sulfur battery is regarded as one of the most promising candidates for lithium–metal batteries with high energy density. However, dendrite Li formation and low cycle efficiency of the Li anode as well as unstable sulfur based cathode still hinder its practical application. Herein a novel electrolyte (1 m LiODFB/EC‐DMC‐FEC) is designed not only to address the above problems of Li anode but also to match sulfur cathode perfectly, leading to extraordinary electrochemical performances. Using this electrolyte, lithium|lithium cells can cycle stably for above 2000 hours and the average Coulumbic efficiency reaches 98.8 %. Moreover, the Li–S battery delivers a reversible capacity of about 1400 mAh g?1sulfur with retention of 89 % for 1100 cycles at 1 C, and a capacity above 1100 mAh g?1sulfur at 10 C. The more advantages of this cell system are its outstanding cycle stability at 60 °C and no self‐discharge phenomena.  相似文献   

12.
Lithium metal is used to achieve high‐energy‐density batteries due to its large theoretical capacity and low negative electrochemical potential. The introduction of quasi‐solid electrolytes simultaneously overcomes the safety problems induced by the liquid electrolytes and the high interfacial resistance issues confronted by all solid‐state electrolytes. In‐depth investigations involving interfacial behaviors in quasi‐solid lithium metal batteries are inadequate. Herein an ultrathin Li3OCl quasi‐solid‐state electrolyte layer (500 nm thickness) is used to cover a lithium anode. The polarization of the anode is remarkably reduced by introducing the Li3OCl quasi‐solid‐state electrolyte. In contrast to the decomposition of solvents in a standard electrolyte (EC‐DEC,1.0 m LiPF6), the established quasi‐solid‐state electrolyte interfaces can significantly inhibit the decomposition of solvents when the cut‐off voltage is 4.5 V.  相似文献   

13.
The Na/PVdF/S cells were composed of solid sodium, sulfur, and polyvinylidene fluoride–hexafluoropropene (PVdF) gel polymer electrolyte. The PVdF polymer electrolyte was prepared form tetraglyme plasticizer and NaCF3SO3 salt, and its electrochemical properties were studied using CV and impedance analysis. The interfacial resistance between sodium and polymer electrolyte increase with storage time, which might be associated with passivation layer. Solid-state sodium/sulfur cell using a PVdF gel polymer electrolyte has been tested. The Na/PVdF/S cell with 0.288 mA cm?2 shows a high discharge capacity of 392 mAh g?1 and 36 mAh g?1 after 20 cycles. The cycle performance of Na/GPE/S cell operating at 25 °C is worse than Na/S cell at a high temperature.  相似文献   

14.
Room‐temperature sodium–sulfur (RT‐Na/S) batteries hold significant promise for large‐scale application because of low cost of both sodium and sulfur. However, the dissolution of polysulfides into the electrolyte limits practical application. Now, the design and testing of a new class of sulfur hosts as transition‐metal (Fe, Cu, and Ni) nanoclusters (ca. 1.2 nm) wreathed on hollow carbon nanospheres (S@M‐HC) for RT‐Na/S batteries is reported. A chemical couple between the metal nanoclusters and sulfur is hypothesized to assist in immobilization of sulfur and to enhance conductivity and activity. S@Fe‐HC exhibited an unprecedented reversible capacity of 394 mAh g?1 despite 1000 cycles at 100 mA g?1, together with a rate capability of 220 mAh g?1 at a high current density of 5 A g?1. DFT calculations underscore that these metal nanoclusters serve as electrocatalysts to rapidly reduce Na2S4 into short‐chain sulfides and thereby obviate the shuttle effect.  相似文献   

15.
Lithium–sulfur (Li–S) batteries are highly regarded as the next‐generation energy‐storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg?1. Sulfurized polyacrylonitrile (SPAN) is considered a promising sulfur cathode to substitute carbon/sulfur (C/S) composites to afford higher Coulombic efficiency, improved cycling stability, and potential high‐energy‐density Li–SPAN batteries. However, the instability of the Li‐metal anode threatens the performances of Li–SPAN batteries bringing limited lifespan and safety hazards. Li‐metal can react with most kinds of electrolyte to generate a protective solid electrolyte interphase (SEI), electrolyte regulation is a widely accepted strategy to protect Li‐metal anodes in rechargeable batteries. Herein, the basic principles and current challenges of Li–SPAN batteries are addressed. Recent advances on electrolyte regulation towards stable Li‐metal anodes in Li–SPAN batteries are summarized to suggest design strategies of solvents, lithium salts, additives, and gel electrolyte. Finally, prospects for future electrolyte design and Li anode protection in Li–SPAN batteries are discussed.  相似文献   

16.
Porous materials have many structural advantages for energy storage and conversion devices such as rechargeable batteries, supercapacitors, and fuel cells. When applied as a host material in lithium‐sulfur batteries, porous silica materials with a pomegranate‐like architecture can not only act as a buffer matrix for accommodating a large volume change of sulfur, but also suppress the polysulfide shuttle effect. The porous silica/sulfur composite cathodes exhibit excellent electrochemical performances including a high specific capacity of 1450 mA h g?1, a reversible capacity of 82.9 % after 100 cycles at a rate of C/2 (1 C=1672 mA g?1) and an extended cyclability over 300 cycles at 1 C‐rate. Furthermore, the high polysulfide adsorption property of porous silica has been proven by ex‐situ analyses, showing a relationship between the surface area of silica and polysulfide adsorption ability. In particular, the modified porous silica/sulfur composite cathode, which is treated by a deep‐lithiation process in the first discharge step, exhibits a highly reversible capacity of 94.5 % at 1C‐rate after 300 cycles owing to a formation of lithiated‐silica frames and stable solid‐electrolyte‐interphase layers.  相似文献   

17.
Safety concerns pose a significant challenge for the large‐scale employment of lithium–sulfur batteries. Extremely flammable conventional electrolytes and dendritic lithium deposition cause severe safety issues. Now, an intrinsic flame‐retardant (IFR) electrolyte is presented consisting of 1.1 m lithium bis(fluorosulfonyl)imide in a solvent mixture of flame‐retardant triethyl phosphate and high flashpoint solvent 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl (1:3, v/v) for safe lithium–sulfur (Li?S) batteries. This electrolyte exhibits favorable flame‐retardant properties and high reversibility of the lithium metal anode (Coulombic efficiency >99 %). This IFR electrolyte enables stable lithium plating/stripping behavior with micro‐sized and dense‐packing lithium deposition at high temperatures. When coupled with a sulfurized pyrolyzed poly(acrylonitrile) cathode, Li?S batteries deliver a high composite capacity (840.1 mAh g?1) and high sulfur utilization of 95.6 %.  相似文献   

18.
Despite the high theoretical capacity of lithium–sulfur batteries, their practical applications are severely hindered by a fast capacity decay, stemming from the dissolution and diffusion of lithium polysulfides in the electrolyte. A novel functional carbon composite (carbon‐nanotube‐interpenetrated mesoporous nitrogen‐doped carbon spheres, MNCS/CNT), which can strongly adsorb lithium polysulfides, is now reported to act as a sulfur host. The nitrogen functional groups of this composite enable the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much improved electrochemical performance (1200 mAh g?1 after 200 cycles). The enhancement in adsorption can be attributed to the chemical bonding of lithium ions by nitrogen functional groups in the MNCS/CNT framework. Furthermore, the micrometer‐sized spherical structure of the material yields a high areal capacity (ca. 6 mAh cm?2) with a high sulfur loading of approximately 5 mg cm?2, which is ideal for practical applications of the lithium–sulfur batteries.  相似文献   

19.
Replacing the commonly used nonaqueous liquid electrolytes in rechargeable sodium batteries with polymer solid electrolytes is expected to provide new opportunities to develop safer batteries with higher energy densities. However, this poses challenges related to the interface between the Na‐metal anode and polymer electrolytes. Driven by systematically investigating the interface properties, an improved interface is established between a composite Na/C metal anode and electrolyte. The observed chemical bonding between carbon matrix of anode with solid polymer electrolyte, prevents delamination, and leads to more homogeneous plating and stripping, which reduces/suppresses dendrite formation. Full solid‐state polymer Na‐metal batteries, using a high mass loaded Na3V2(PO4)3 cathode, exhibit ultrahigh capacity retention of more than 92 % after 2 000 cycles and over 80 % after 5 000 cycles, as well as the outstanding rate capability.  相似文献   

20.
The lithium–sulfur battery is an attractive option for next‐generation energy storage owing to its much higher theoretical energy density than state‐of‐the‐art lithium‐ion batteries. However, the massive volume changes of the sulfur cathode and the uncontrollable deposition of Li2S2/Li2S significantly deteriorate cycling life and increase voltage polarization. To address these challenges, we develop an ?‐caprolactam/acetamide based eutectic‐solvent electrolyte, which can dissolve all lithium polysulfides and lithium sulfide (Li2S8–Li2S). With this new electrolyte, high specific capacity (1360 mAh g?1) and reasonable cycling stability are achieved. Moreover, in contrast to conventional ether electrolyte with a low flash point (ca. 2 °C), such low‐cost eutectic‐solvent‐based electrolyte is difficult to ignite, and thus can dramatically enhance battery safety. This research provides a new approach to improving lithium–sulfur batteries in aspects of both safety and performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号