首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An efficient, enantio‐ and diastereoselective, copper‐catalyzed coupling of imines, 1,3‐enynes, and diborons is reported. The process shows broad substrate scope and delivers complex, chiral homopropargyl amines; useful building blocks on the way to biologically‐relevant compounds. In particular, functionalized homopropargyl amines bearing up to three contiguous stereocenters can be prepared in a single step.  相似文献   

2.
3.
1,2‐Bisphosphines have been identified as one class of important and powerful chiral ligands in asymmetric catalysis with transition metals. Herein, a copper(I)‐catalyzed asymmetric hydrophosphination of α,β‐unsaturated phosphine sulfides was developed with the assistance of “soft–soft” interaction between copper(I)‐catalyst and the phosphine sulfide moiety, which afforded 1,2‐bisphosphine derivatives with diversified electronic nature and steric hindrance in high to excellent yields with high to excellent enantioselectivity. Moreover, the challenging catalytic asymmetric hydrophosphination/protonation reaction was achieved with excellent enantioselectivity. Strikingly, the dynamic kinetic resolution of racemic diarylphosphines was also successfully carried out with high to excellent diastereo‐ and enantioselectivities. Interestingly, the nucleophilic copper(I)‐diphenylphosphide species was characterized by 31P NMR spectrum and mass spectrum. At last, three products were transformed to chiral 1,2‐bisphosphines, which were employed as ligands in Rh‐catalyzed asymmetric hydrogenation of α‐amino‐α,β‐unsaturated ester. The α‐amino acid derivative was produced in high enantioselectivity, which demonstrated the utility of the present methodology.  相似文献   

4.
Chiral 2,3‐allenols were constructed through copper(I)‐catalyzed asymmetric direct alkynylogous aldol reaction. With aromatic and heteroaromatic aldehydes, the alkynylogous aldol reaction with (R)‐DTBM‐SEGPHOS as the ligand proceeded smoothly to furnish the products in excellent regioselectivity with good to high diastereoselectivity and excellent enantioselectivity. In the cases of aliphatic aldehydes, esters of but‐2‐yn‐1‐ol as the substrates and (R,R)‐Ph‐BPE as the ligand were found to be crucial to get good to high regio‐ and diastereoselectivity. The produced chiral 2,3‐allenols are easily transformed into synthetically useful 2‐furanones through cyclization. Finally, the developed method was successfully applied in the rapid synthesis of two chiral intermediates toward the synthesis of two pharmaceutically active compounds that have been proposed for the treatment of neurological disorders.  相似文献   

5.
A Cu‐catalyzed diastereo‐ and enantioselective borylative coupling reaction of 1,3‐dienes with imines was realized. Branched homoallylic amines are readily prepared in a syn‐selective manner with high regio‐, diastereo‐ and enantioselectivity. Moreover, these three‐component coupling reactions feature good functional‐group compatibility and easy access to the substrates and catalyst.  相似文献   

6.
7.
A highly enantio‐ and diastereoselective copper‐catalyzed three‐component coupling affords the first general synthesis of homoallylic amines bearing adjacent stereocenters from achiral starting materials. The method utilizes a commercially available NHC ligand and copper source, operates at ambient temperature, couples readily available simple imines, allenes, and diboranes, and yields high‐value homoallylic amines that exhibit versatile amino, alkenyl, and boryl units.  相似文献   

8.
A chiral rhodium complex catalyzes the highly enantioselective coupling of arylboronic acids, 1,3‐enynes, and imines to give homoallylic sulfamates. The key step is the generation of allylrhodium(I) species by alkenyl‐to‐allyl 1,4‐rhodium(I) migration.  相似文献   

9.
Chiral compounds arising from the replacement of hydrogen atoms by deuterium are very important in organic chemistry and biochemistry. Some of these chiral compounds have a non‐measurable specific rotation, owing to very small differences between the isotopomeric groups, and exhibit cryptochirality. This particular class of compounds is difficult to synthesize and characterize. Herein, we present a catalytic and highly enantioselective conversion of terminal alkenes to various β and more remote chiral isotopomers of 1‐alkanols, with ≥99 % enantiomeric excess (ee), by the Zr‐catalyzed asymmetric carboalumination of alkenes (ZACA) and Cu‐catalyzed cross‐coupling reactions. ZACA‐in situ iodinolysis of allyl alcohol and ZACA‐in situ oxidation of TBS‐protected ω‐alkene‐1‐ols protocols were applied to the synthesis of both (R)‐ and (S)‐difunctional intermediates with 80–90 % ee. These intermediates were readily purified to provide enantiomerically pure (≥99 % ee) compounds by lipase‐catalyzed acetylation. These functionally rich intermediates serve as very useful synthons for the construction of various chiral isotopomers of 1‐alkanols in excellent enantiomeric purity (≥99 % ee) by introducing deuterium‐labeled groups by Cu‐catalyzed cross‐coupling reactions without epimerization.  相似文献   

10.
The rapid and direct asymmetric synthesis of 3‐(3a‐indolyl)hexahydropyrroloindoline motifs is an extremely important part of the total synthesis of several alkaloid structures. Herein, an intermolecular, asymmetric cascade dearomatization reaction of indole acetamides with 3‐indolylphenyliodonium salts has been developed. This protocol provides a straightforward access to 3‐(3a‐indolyl)hexahydropyrroloindolines bearing an all‐carbon quaternary stereocenter at the C3 position of the indoline ring with high enantioselectivities. The utility of the protocol has been demonstrated by the formal asymmetric synthesis of folicanthine.  相似文献   

11.
12.
13.
A protocol for the asymmetric synthesis of highly substituted chiral allenes with control of point and axial chirality has been developed. A palladium‐catalyzed [3+2] cycloaddition using readily available racemic allenes gives access to densely functionalized chiral allenes with excellent yields and functional group tolerance. The catalytic asymmetric protocol utilizes a broad range of allenyl TMM (trimethylenemethane) donors to form cyclopentanes, pyrrolidines, and spirocycles with very good control of regio‐, enantio‐, and diastereoselectivity. The chiral allene moiety is shown to be a valuable functional group for rapid elaboration towards complex targets.  相似文献   

14.
A flexible approach, applicable on a gram scale, to chiral 2‐endo‐substituted 9‐oxabispidines was developed. The key intermediate, a cis‐configured 6‐aminomethylmorpholine‐2‐carbonitrile, was prepared from (R)‐3‐aminopropane‐1,2‐diol and 2‐chloroacrylonitrile. The 2‐endo substituent was introduced by Grignard addition, cyclization, and exo‐selective reduction, thus furnishing the enantiomerically pure bi‐ and tricyclic 9‐oxabispidines in 19–59 % yield. The CuCl2 complex of the tricyclic 9‐oxabispidine, which carries an 2‐endo,N‐anellated piperidine ring, is an excellent catalyst for enantioselective Henry reactions giving the S‐configured β‐nitro alcohols in 91–98 % ee (13 examples). Surprisingly, the analogous copper complexes of the bicyclic 9‐oxabispidines delivered the enantiocomplementary R‐configured products in 33–57 % ee. The respective transition states were discussed.  相似文献   

15.
16.
In control : A new catalytic vinylogous Mukaiyama aldol reaction provides products with high diastereo‐ and enantioselectivities (up to 99 % de and ee; see scheme). The relative and absolute stereochemistry of a representative product was rigorously assigned by NMR and CD spectroscopies (measured and calculated), X‐ray diffraction, and quantum‐chemical calculations.

  相似文献   


17.
18.
The mechanism‐oriented reaction design for the divergent synthesis of chiral molecules from simple starting materials is highly desirable. In this work, aromatic amide‐derived nonbiarylatropisomer/silver (silver/Xing‐Phos) complex was used to catalyze the Michael addition of glycine aldimino esters to chalcones and successfully applied to the subsequent cyclocondensation to afford substituted cis‐Δ(1)‐pyrroline derivatives with up to 98 % ee. Besides the inherent performance of the chiral Ag/Xing‐Phos catalyst system, it was found that the workup of such reactions played an important role for the stereoselective construction of stereodivergent Δ(1)‐pyrrolines, in which an epimerization of the cis‐Δ(1)‐pyrrolines to the trans‐isomers during was revealed.  相似文献   

19.
A catalytic protocol for the diastereoselective synthesis of anti‐1,2‐hydroxyboronates is described. The process provides access to secondary alkyl organoborons. The deborylative 1,2‐addition reactions of alkyl 1,1‐diborons proceed in the presence of a silver(I) salt with either KOtBu or nBuLi as an activator. The catalytic diastereoselective protocol can be extended to aryl, alkenyl, and alkyl aldehydes with up to 99:1 d.r.  相似文献   

20.
The enantioselective borylative dearomatization of a heteroaromatic compound has been achieved using a copper(I) catalyst and a diboron reagent. This reaction involves the regio‐ and enantioselective addition of active borylcopper(I) species to indole‐2‐carboxylates, followed by the diastereoselective protonation of the resulting copper(I) enolate to give the corresponding chiral indolines, which bear consecutive stereogenic centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号