首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A supported metal catalyst was designed, characterized, and tested for aqueous phase heterogeneous hydrogenation of vinyl acetate with parahydrogen to produce 13C‐hyperpolarized ethyl acetate for potential biomedical applications. The Rh/TiO2 catalyst with a metal loading of 23.2 wt % produced strongly hyperpolarized 13C‐enriched ethyl acetate‐1‐13C detected at 9.4 T. An approximately 14‐fold 13C signal enhancement was detected using circa 50 % parahydrogen gas without taking into account relaxation losses before and after polarization transfer by magnetic field cycling from nascent parahydrogen‐derived protons to 13C nuclei. This first observation of 13C PHIP‐hyperpolarized products over a supported metal catalyst in an aqueous medium opens up new possibilities for production of catalyst‐free aqueous solutions of nontoxic hyperpolarized contrast agents for a wide range of biomolecules amenable to the parahydrogen induced polarization by side arm hydrogenation (PHIP‐SAH) approach.  相似文献   

2.
A new β‐cyclodextrin dimer, 2,6‐dimethylpyridine‐bridged‐bis(6‐monoammonio‐β‐cyclodextrin) (pyridyl BisCD, L), is synthesized. Its zinc complex (ZnL) is prepared, characterized, and applied as a catalyst for diester hydrolysis. The formation constant (log KML=7.31±0.04) of the complex and deprotonation constant (pKa1=8.14±0.03, pKa2=9.24±0.01) of the coordinated water molecule were determined by a potentiometric pH titration at (25±0.1)°C, indicating a tridentate N,N′,N′′‐zinc coordination. Hydrolysis kinetics of carboxylic acid esters were determined with bis(4‐nitrophenyl)carbonate (BNPC) and 4‐nitrophenyl acetate (NA) as the substrates. The resulting hydrolysis rate constants show that ZnL has a very high rate of catalysis for BNPC hydrolysis, yielding an 8.98×103‐fold rate enhancement over uncatalyzed hydrolysis at pH 7.00, compared to only a 71.76‐fold rate enhancement for NA hydrolysis. Hydrolysis kinetics of phosphate esters catalyzed by ZnL are also investigated using bis(4‐nitrophenyl)phosphate (BNPP) and disodium 4‐nitrophenyl phosphate (NPP) as the substrates. The initial first‐order rate constant of catalytic hydrolysis for BNPP was 1.29×10?7 s?1 at pH 8.5, 35 °C and 0.1 mM catalyst concentration, about 1600‐fold acceleration over uncatalyzed hydrolysis. The pH dependence of the BNPP cleavage in aqueous buffer was shown as a sigmoidal curve with an inflection point around pH 8.25, which is nearly identical to the pKa value of the catalyst from the potentiometric titration. The kBNPP of BNPP hydrolysis promoted by ZnL is found to be 1.68×10?3 M ?1 s?1, higher than that of NPP, and comparatively higher than those promoted by its other tridentate N,N′,N′′‐zinc analogues.  相似文献   

3.
A novel heterogeneous dirhodium catalyst has been synthesized. This stable catalyst is constructed from dirhodium acetate dimer (Rh2(OAc)4) units, which are covalently linked to amine‐ and carboxyl‐bifunctionalized mesoporous silica (SBA‐15?NH2?COOH). It shows good efficiency in catalyzing the cyclopropanation reaction of styrene and ethyl diazoacetate (EDA) forming cis‐ and trans‐1‐ethoxycarbonyl‐2‐phenylcyclopropane. To characterize the structure of this catalyst and to confirm the successful immobilization, heteronuclear solid‐state NMR experiments have been performed. The high application potential of dynamic nuclear polarization (DNP) NMR for the analysis of binding sites in this novel catalyst is demonstrated. Signal‐enhanced 13C CP MAS and 15N CP MAS techniques have been employed to detect different carboxyl and amine binding sites in natural abundance on a fast time scale. The interpretation of the experimental chemical shift values for different binding sites has been corroborated by quantum chemical calculations on dirhodium model complexes.  相似文献   

4.
We report on a simple approach for efficient NMR proton hyperpolarization of propane using the parahydrogen‐induced polarization (PHIP) technique, which yielded ≈6.2 % proton polarization using ≈80 % parahydrogen, a record level achieved with any hyperpolarization technique for propane. Unlike in previously developed approaches designed for continuous‐flow operation, where reactants (propene and parahydrogen) are simultaneously loaded for homogeneous or heterogeneous pairwise addition of parahydrogen, here a batch‐mode method is applied: propene is first loaded into the catalyst‐containing solution, which is followed by homogeneous hydrogenation via parahydrogen bubbling delivered at ≈7.1 atm. The achieved nuclear spin polarization of this contrast agent potentially useful for pulmonary imaging is approximately two orders of magnitude greater than that achieved in the continuous‐flow homogeneous catalytic hydrogenation, and a factor of 3–10 more efficient compared to the typical results of heterogeneous continuous‐flow hydrogenations.  相似文献   

5.
Fluorinated substances are important in chemistry, industry, and the life sciences. In a new approach, parahydrogen‐induced polarization (PHIP) is applied to enhance 19F MR signals of (perfluoro‐n‐hexyl)ethene and (perfluoro‐n‐hexyl)ethane. Unexpectedly, the end‐standing CF3 group exhibits the highest amount of polarization despite the negligible coupling to the added protons. To clarify this non‐intuitive distribution of polarization, signal enhancements in deuterated chloroform and acetone were compared and 19F–19F NOESY spectra, as well as 19F T1 values were measured by NMR spectroscopy. By using the well separated and enhanced signal of the CF3 group, first 19F MR images of hyperpolarized linear semifluorinated alkenes were recorded.  相似文献   

6.
A concise and efficient synthesis of 6‐benzimidazolyl‐5‐nitrosopyrimidines has been developed using Schiff base‐type intermediates derived from N4‐(2‐aminophenyl)‐6‐methoxy‐5‐nitrosopyrimidine‐2,4‐diamine. 6‐Methoxy‐N4‐{2‐[(4‐methylbenzylidene)amino]phenyl}‐5‐nitrosopyrimidine‐2,4‐diamine, (I), and N4‐{2‐[(ethoxymethylidene)amino]phenyl}‐6‐methoxy‐5‐nitrosopyrimidine‐2,4‐diamine, (III), both crystallize from dimethyl sulfoxide solution as the 1:1 solvates C19H18N6O2·C2H6OS, (Ia), and C14H16N6O3·C2H6OS, (IIIa), respectively. The interatomic distances in these intermediates indicate significant electronic polarization within the substituted pyrimidine system. In each of (Ia) and (IIIa), intermolecular N—H…O hydrogen bonds generate centrosymmetric four‐molecule aggregates. Oxidative ring closure of intermediate (I), effected using ammonium hexanitratocerate(IV), produced 4‐methoxy‐6‐[2‐(4‐methylphenyl‐1H‐benzimidazol‐1‐yl]‐5‐nitrosopyrimidin‐2‐amine, C19H16N6O2, (II) [Cobo et al. (2018). Private communication (CCDC 1830889). CCDC, Cambridge, England], where the extent of electronic polarization is much less than in (Ia) and (IIIa). A combination of N—H…N and C—H…O hydrogen bonds links the molecules of (II) into complex sheets.  相似文献   

7.
Several supported metal catalysts were synthesized, characterized, and tested in heterogeneous hydrogenation of propene with parahydrogen to maximize nuclear spin hyperpolarization of propane gas using parahydrogen induced polarization (PHIP). The Rh/TiO2 catalyst with a metal particle size of 1.6 nm was found to be the most active and effective in the pairwise hydrogen addition and robust, demonstrating reproducible results with multiple hydrogenation experiments and stability for ≥1.5 years. 3D 1H magnetic resonance imaging (MRI) of 1 % hyperpolarized flowing gas with microscale spatial resolution (625×625×625 μm3) and large imaging matrix (128×128×32) was demonstrated by using a preclinical 4.7 T scanner and 17.4 s imaging scan time.  相似文献   

8.
Recently, a facile method for the synthesis of size‐monodisperse Pt, Pt3Sn, and PtSn intermetallic nanoparticles (iNPs) that are confined within a thermally robust mesoporous silica (mSiO2) shell was introduced. These nanomaterials offer improved selectivity, activity, and stability for large‐scale catalytic applications. Here we present the first study of parahydrogen‐induced polarization NMR on these Pt‐Sn catalysts. A 3000‐fold increase in the pairwise selectivity, relative to the monometallic Pt, was observed using the PtSn@mSiO2 catalyst. The results are explained by the elimination of the three‐fold Pt sites on the Pt(111) surface. Furthermore, Pt‐Sn iNPs are shown to be a robust catalytic platform for parahydrogen‐induced polarization for in vivo magnetic resonance imaging.  相似文献   

9.
The NMR hyperpolarization of uniformly 15N-labeled [15N3]metronidazole is demonstrated by using SABRE-SHEATH. In this antibiotic, the 15NO2 group is hyperpolarized through spin relays created by 15N spins in [15N3]metronidazole, and the polarization is transferred from parahydrogen-derived hydrides over six chemical bonds. In less than a minute of parahydrogen bubbling at approximately 0.4 μT, a high level of nuclear spin polarization (P15N) of around 16 % is achieved on all three 15N sites. This product of 15N polarization and concentration of 15N spins is around six-fold better than any previous value determined for 15N SABRE-derived hyperpolarization. At 1.4 T, the hyperpolarized state persists for tens of minutes (relaxation time, T1≈10 min). A novel synthesis of uniformly 15N-enriched metronidazole is reported with a yield of 15 %. This approach can potentially be used for synthesis of a wide variety of in vivo metabolic probes with potential uses ranging from hypoxia sensing to theranostic imaging.  相似文献   

10.
Palladium chloride was grafted to amino‐functionalized MCM‐41 to prepare heterogeneous catalysts. XRD, N2 adsorption–desorption isotherms, IR, 13C and 29Si cross‐polarization magic‐angle spinning NMR spectroscopy and XPS techniques were employed to characterize the catalytic materials. The heterogeneous palladium catalyst exhibited excellent catalytic activity for the Heck vinylation of iodobenzene with methyl acrylate, giving 92% yield of methyl cinnamate in the presence of N‐methylpyrrolidone (NMP) and triethylamine (Et3N). The stability of the heterogeneous catalyst was also studied in detail. The catalytic tests showed that the palladium leaching correlated to solvent, base and palladium loading. The heterogeneous catalyst exhibited excellent stability towards loss of activity and palladium leaching was not observed during six recycles in the presence of toluene and Na2CO3. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The nitroxide‐based free radical 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) is a widely used polarizing agent in NMR signal amplification via dissolution dynamic nuclear polarization (DNP). In this study, we have thoroughly investigated the effects of 15N and/or 2H isotopic labeling of 4‐oxo‐TEMPO free radical on 13C DNP of 3 M [1‐13C] sodium acetate samples in 1 : 1 v/v glycerol : water at 3.35 T and 1.2 K. Four variants of this free radical were used for 13C DNP: 4‐oxo‐TEMPO, 4‐oxo‐TEMPO‐15N, 4‐oxo‐TEMPO‐d16 and 4‐oxo‐TEMPO‐15N,d16. Our results indicate that, despite the striking differences seen in the electron spin resonance (ESR) spectral features, the 13C DNP efficiency of these 15N and/or 2H‐enriched 4‐oxo‐TEMPO free radicals are relatively the same compared with 13C DNP performance of the regular 4‐oxo‐TEMPO. Furthermore, when fully deuterated glassing solvents were used, the 13C DNP signals of these samples all doubled in the same manner, and the 13C polarization buildup was faster by a factor of 2 for all samples. The data here suggest that the hyperfine coupling contributions of these isotopically enriched 4‐oxo‐TEMPO free radicals have negligible effects on the 13C DNP efficiency at 3.35 T and 1.2 K. These results are discussed in light of the spin temperature model of DNP. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A scalable and versatile methodology for production of vinylated carboxylic compounds with 13C isotopic label in C1 position is described. It allowed synthesis of vinyl acetate‐1‐13C, which is a precursor for preparation of 13C hyperpolarized ethyl acetate‐1‐13C, which provides a convenient vehicle for potential in vivo delivery of hyperpolarized acetate to probe metabolism in living organisms. Kinetics of vinyl acetate molecular hydrogenation and polarization transfer from para‐hydrogen to 13C via magnetic field cycling were investigated. Nascent proton nuclear spin polarization (%PH) of ca. 3.3 % and carbon‐13 polarization (%P13C) of ca. 1.8 % were achieved in ethyl acetate utilizing 50 % para‐hydrogen corresponding to ca. 50 % polarization transfer efficiency. The use of nearly 100% para‐hydrogen and the improvements of %PH of para‐hydrogen‐nascent protons may enable production of 13C hyperpolarized contrast agents with %P13C of 20–50 % in seconds using this chemistry.  相似文献   

13.
The kinetics of the gas‐phase reactions of O3 with a series of selected terpenes has been investigated under flow‐tube conditions at a pressure of 100 mbar synthetic air at 295 ± 0.5 K. In the presence of a large excess of m‐xylene as an OH radical scavenger, rate coefficients k(O3+terpene) were obtained with a relative rate technique, (unit: cm3 molecule?1 s?1, errors represent 2σ): α‐pinene: (1.1 ± 0.2) × 10?16, 3Δ‐carene: (5.9 ± 1.0) × 10?17, limonene: (2.5 ± 0.3) × 10?16, myrcene: (4.8 ± 0.6) × 10?16, trans‐ocimene: (5.5 ± 0.8) × 10?16, terpinolene: (1.6 ± 0.4) × 10?15 and α‐terpinene: (1.5 ± 0.4) × 10?14. Absolute rate coefficients for the reaction of O3 with the used reference substances (2‐methyl‐2‐butene and 2,3‐dimethyl‐2‐butene) were measured in a stopped‐flow system at a pressure of 500 mbar synthetic air at 295 ± 2 K using FT‐IR spectroscopy, (unit: cm3 molecule?1 s?1, errors represent 2σ ): 2‐methyl‐2‐butene: (4.1 ± 0.5) × 10?16 and 2,3‐dimethyl‐2‐butene: (1.0 ± 0.2) × 10?15. In addition, OH radical yields were found to be 0.47 ± 0.04 for 2‐methyl‐2‐butene and 0.77 ± 0.04 for 2,3‐dimethyl‐2‐butene. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 394–403, 2002  相似文献   

14.
A kinetic study on hydrolysis of N‐(2′‐hydroxyphenyl)phthalamic acid ( 1 ), N‐(2′‐methoxyphenyl)phthalamic acid ( 2 ), and N‐(2′‐methoxyphenyl)benzamide ( 3 ) under a highly alkaline medium gives second‐order rate constants, kOH, for the reactions of HO? with 1, 2 , and 3 as (4.73 ± 0.36) × 10?8 at 35°C, (2.42 ± 0.28) × 10?6 and (5.94 ± 0.23) × 10?5 M?1 s?1 at 65°C, respectively. Similar values of kOH for 3 , N‐methylbenzanilide, N‐methylbenzamide, and N,N‐dimethylbenzamide despite the difference between pKa values of aniline and ammonia of ~10 pK units are qualitatively explained. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 1–11, 2009  相似文献   

15.
The aldehyde moiety in the title complex, chloro(2‐pyridinecarboxaldehyde‐N,O)(2,2′:6′,2′′‐terpyridine‐κ3N)ruthenium(II)–chloro­(2‐pyridine­carboxyl­ic acid‐N,O)(2,2′:6′,2′′‐ter­pyridine‐κ3N)­ruthenium(II)–perchlorate–chloro­form–water (1.8/0.2/2/1/1), [RuCl­(C6H5NO)­(C15H11N3)]1.8[RuCl­(C6H5­NO2)(C15H11N3)]0.2­(ClO4)2·­CHCl3·­H2O, is a structural model of substrate coordination to a transfer hydrogenation catalyst. The title complex features two independent RuII complex cations that display very similar distorted octahedral coordination provided by the three N atoms of the 2,2′:6′,2′′‐ter­pyridine ligand, the N and O atoms of the 2‐pyridine­carbox­aldehyde (pyCHO) ligand and a chloride ligand. One of the cation sites is disordered such that the aldehyde group is replaced by a 20 (1)% contribution from a carboxyl­ic acid group (aldehyde H replaced by carboxyl O—H). Notable dimensions in the non‐disordered complex cation are Ru—N 2.034 (2) Å and Ru—O 2.079 (2) Å to the pyCHO ligand and O—C 1.239 (4) Å for the pyCHO carbonyl group.  相似文献   

16.
The hyperpolarization of heteronuclei via signal amplification by reversible exchange (SABRE) was investigated under conditions of heterogeneous catalysis and microtesla magnetic fields. Immobilization of [IrCl(COD)(IMes)], [IMes=1,3‐bis(2,4,6‐trimethylphenyl), imidazole‐2‐ylidene; COD=cyclooctadiene] catalyst onto silica particles modified with amine linkers engenders an effective heterogeneous SABRE (HET‐SABRE) catalyst that was used to demonstrate a circa 100‐fold enhancement of 15N NMR signals in 15N‐pyridine at 9.4 T following parahydrogen bubbling within a magnetic shield. No 15N NMR enhancement was observed from the supernatant liquid following catalyst separation, which along with XPS characterization supports the fact that the effects result from SABRE under heterogeneous catalytic conditions. The technique can be developed further for producing catalyst‐free agents via SABRE with hyperpolarized heteronuclear spins, and thus is promising for biomedical NMR and MRI applications.  相似文献   

17.
In the title compound, C18H15N4O+·Cl·1.5H2O, one water site is fully ordered with unit occupancy while the other, which lies close to an inversion centre in the space group C2/c, has only 0.5 occupancy. The cation exhibits bond fixation in the fused carbocyclic ring and electronic polarization in the terminal heterocyclic ring. The components are linked into complex sheets by a combination of N—H...O, N—H...Cl, O—H...O, O—H...Cl and C—H...O hydrogen bonds.  相似文献   

18.
The development of an artificial heterogeneous dyad by covalently anchoring a hydrogen‐evolving molecule catalyst to a semiconductor photosensitizer through a bridging ligand is highly challenging. Herein, we adopt the inorganic–organic hybrid CdS–DETA NSs (DETA=diethylenetriamine, NSs=nanosheets) as initial matrix to successfully construct an imine bond (‐CH=N‐) linked heterogeneous dyad [CdS?N=CH?Ni] through the condensation reaction between the amino groups of CdS–DETA and the aldehyde group of the water reduction molecular catalyst, [(tpy‐CHO)2Ni]Cl2 (tpy=terpyridine). The [CdS?N=CH?Ni] enables a turnover number (TON) of about 43 815 versus Ni catalysts and an initial turnover frequency (TOF) of approximately 0.47 s?1 in 26 h under visible‐light irradiation (λ>420 nm). The apparent quantum yield (AQY) reaches (9.9±0.8) % at 420 nm. Under optical conditions, the [CdS?N=CH?Ni] can achieve a considerable amount of hydrogen production, 507.1±27 μmol H2 for 6 h, which is 1.27 times that generated from the mechanically mixed system of CdS–DETA NSs and [(tpy‐CH=NR)2Ni]Cl2 ( III ) under otherwise identical conditions. Furthermore, its TON value based on Ni species is also higher than that of the mixed system of CdS–DETA and III .  相似文献   

19.
The new monomer N′‐(β‐methacryloyloxyethyl)‐2‐pyrimidyl‐(p‐benzyloxy‐ carbonyl)aminobenzenesulfonamide (MPBAS) (M1) is synthesized using sulfadiazine as parent compound. It could be homopolymerized and copolymerized with N‐phenyl maleimide (NPMI) (M2) by radical mechanism using AIBN as initiator at 60 °C in dimethylformamide. The new monomer MPBAS and polymers were identified by IR, element analysis and 1H NMR in detail. The monomer reactivity ratios in copolymerization were determined by YBR method, and r1 (MPBAS) = 2.39 ± 0.05, r2 (NPMI) = 0.33 ± 0.02. In the presence of ammonium formate, benzyloxycarbonyl groups could be broken fluently from MPBAS segments of copolymer by catalytic transfer hydrogenation, and the copolymer with sulfadiazine side groups are recovered. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2548–2554, 2000  相似文献   

20.
The electrochemical behaviour of hydrazine at a 1‐benzyl‐4‐ferrocenyl‐1H‐[1,2,3]‐triazole‐triazole/carbon nanotube modified glassy carbon electrode has been studied. The modified electrode shows an excellent electrocatalytic activity for the oxidation of hydrazine and accelerates electron transfer rate. The electrocatalytic current increases linearly with hydrazine concentration in the range 0.5–700.0 μm and the detection limit for hydrazine was 33.0 ± 2.0 nm . The diffusion coefficient (D = 2.5 ± 0.1 × 10?5 cm2 s?1) and kinetic parameters such as the electron transfer coefficient, (α = 0.52) and the heterogeneous rate constant (k′ = 5.5 ± 0.1 × 10?3 cm s?1) for hydrazine were determined using electrochemical approaches. Finally, the method was employed for the determination of hydrazine in water samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号