首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel visible‐light‐driven AgBr‐Ag‐BiOBr photocatalyst was synthesized by a facile hydrothermal method. Taking advantage of both p‐n heterojunctions and localized surface plasmon resonance, the p‐metal‐n structure exhibited a superior performance concerning degradation of methyl orange under visible‐light irradiation (λ>420 nm). A possible photodegradation mechanism in the presence of AgBr‐Ag‐BiOBr composites was proposed, and the radical species involved in the degradation reaction were investigated. HO2?/?O2? played the same important role as ?OH in the AgBr‐Ag‐BiOBr photocatalytic system, and both the electron and hole were fully used for degradation of organic pollutants. A dual role of metallic Ag in the photocatalysis was proposed, one being surface plasmon resonance and the other being an electron‐hole bridge. Due to the distinctive p‐metal‐n structure, the visible‐light absorption, the separation of photogenerated carriers and the photocatalysis efficiency were greatly enhanced.  相似文献   

2.
Directly splitting water into H2 and O2 with solar light is extremely important; however, the overall efficiency of water splitting still remains extremely low. Two types of ultrathin semiconductor layers with the same elements and the same thicknesses were designed to uncover how different atomic arrangements influence water‐splitting efficiency thermodynamically and kinetically. As an example, tetrahedrally coordinated blende and octahedrally coordinated rocksalt CoO atomic layers with nearly the same thicknesses were synthesized for the first time. The blende CoO atomic layers have a smaller Eg and abundant d–d internal transition features relative to the rocksalt CoO atomic layers, which ensure enhanced visible‐light harvesting ability. Density functional theory calculations reveal that the Bader charge for Co atoms in blende CoO atomic layers is larger than that of the rocksalt CoO atomic layers, which facilitates photocarrier transfer kinetics, as verified by photoluminescence spectra and time‐resolved fluorescence emission decay spectra. In situ FTIR spectra and energy calculations reveal that the *OOH dissociation step is the rate‐limiting step, where the blende CoO atomic layers possess a smaller *OOH dissociation energy thanks to their higher Bader charge and stronger steric effect, as confirmed by the elongated Co?OOH bonds. The blende CoO atomic layers exhibit visible‐light‐driven H2 and O2 formation rates of 4.43 and 2.63 μmol g?1 h?1, roughly 3.7 times higher than those of the rocksalt CoO atomic layers.  相似文献   

3.
Modular optimization of metal–organic frameworks (MOFs) was realized by incorporation of coordinatively unsaturated single atoms in a MOF matrix. The newly developed MOF can selectively capture and photoreduce CO2 with high efficiency under visible‐light irradiation. Mechanistic investigation reveals that the presence of single Co atoms in the MOF can greatly boost the electron–hole separation efficiency in porphyrin units. Directional migration of photogenerated excitons from porphyrin to catalytic Co centers was witnessed, thereby achieving supply of long‐lived electrons for the reduction of CO2 molecules adsorbed on Co centers. As a direct result, porphyrin MOF comprising atomically dispersed catalytic centers exhibits significantly enhanced photocatalytic conversion of CO2, which is equivalent to a 3.13‐fold improvement in CO evolution rate (200.6 μmol g?1 h?1) and a 5.93‐fold enhancement in CH4 generation rate (36.67 μmol g?1 h?1) compared to the parent MOF.  相似文献   

4.
A model of doping confined in atomic layers is proposed for atomic‐level insights into the effect of doping on photocatalysis. Co doping confined in three atomic layers of In2S3 was implemented with a lamellar hybrid intermediate strategy. Density functional calculations reveal that the introduction of Co ions brings about several new energy levels and increased density of states at the conduction band minimum, leading to sharply increased visible‐light absorption and three times higher carrier concentration. Ultrafast transient absorption spectroscopy reveals that the electron transfer time of about 1.6 ps from the valence band to newly formed localized states is due to Co doping. The 25‐fold increase in average recovery lifetime is believed to be responsible for the increased of electron–hole separation. The synthesized Co‐doped In2S3 (three atomic layers) yield a photocurrent of 1.17 mA cm?2 at 1.5 V vs. RHE, nearly 10 and 17 times higher than that of the perfect In2S3 (three atomic layers) and the bulk counterpart, respectively.  相似文献   

5.
A facile and controllable in situ reduction strategy is used to create surface oxygen vacancies (OVs) on Aurivillius‐phase Sr2Bi2Nb2TiO12 nanosheets, which were prepared by a mineralizer‐assisted soft‐chemical method. Introduction of OVs on the surface of Sr2Bi2Nb2TiO12 extends photoresponse to cover the whole visible region and also tremendously promotes separation of photoinduced charge carriers. Adsorption and activation of CO2 molecules on the surface of the catalyst are greatly enhanced. In the gas‐solid reaction system without co‐catalysts or sacrificial agents, OVs‐abundant Sr2Bi2Nb2TiO12 nanosheets show outstanding CO2 photoreduction activity, producing CO with a rate of 17.11 μmol g?1 h?1, about 58 times higher than that of the bulk counterpart, surpassing most previously reported state‐of‐the‐art photocatalysts. Our study provides a three‐in‐one integrated solution to advance the performance of photocatalysts for solar‐energy conversion and generation of renewable energy.  相似文献   

6.
《中国化学》2018,36(6):538-544
Bi‐ and Y‐codoped TiO2 photocatalysts were synthesized through a sol‐gel method, and they were applied in the photocatalytic reduction of CO2 to formic acid under visible light irradiation. The results revealed that, after doping Bi and Y, the surface area of TiO2 was increased from 5.4 to 93.1 m2/g when the mole fractions of doping Bi and Y were 1.0% and 0.5%, respectively, and the lattice structures of the photocatalysts changed and the oxygen vacancies on the surface of the photocatalysts formed, which would act as the electron capture centers and slow down the recombination of photo‐induced electron and hole. The photocurrent spectra also proved that the photocatalysts had better electronic transmission capacities. The HCOOH yield in CO2 photocatalytic reduction was 747.82 μmol/gcat by using 1% Bi‐0.5% Y‐TiO2 as a photocatalyst. The HCOOH yield was 1.17 times higher than that by using 1% Bi‐TiO2, and 2.23 times higher than that by using pure TiO2. Furthermore, the 1% Bi‐0.5% Y‐TiO2 showed the highest apparent quantum efficiency (AQE) of 4.45%.  相似文献   

7.
A facile and controllable in situ reduction strategy is used to create surface oxygen vacancies (OVs) on Aurivillius‐phase Sr2Bi2Nb2TiO12 nanosheets, which were prepared by a mineralizer‐assisted soft‐chemical method. Introduction of OVs on the surface of Sr2Bi2Nb2TiO12 extends photoresponse to cover the whole visible region and also tremendously promotes separation of photoinduced charge carriers. Adsorption and activation of CO2 molecules on the surface of the catalyst are greatly enhanced. In the gas‐solid reaction system without co‐catalysts or sacrificial agents, OVs‐abundant Sr2Bi2Nb2TiO12 nanosheets show outstanding CO2 photoreduction activity, producing CO with a rate of 17.11 μmol g?1 h?1, about 58 times higher than that of the bulk counterpart, surpassing most previously reported state‐of‐the‐art photocatalysts. Our study provides a three‐in‐one integrated solution to advance the performance of photocatalysts for solar‐energy conversion and generation of renewable energy.  相似文献   

8.
Photocatalytic reduction of CO2 to value‐added fuel has been considered to be a promising strategy to reduce global warming and shortage of energy. Rational design and synthesis of catalysts to maximumly expose the active sites is the key to activate CO2 molecules and determine the reaction selectivity. Herein, we synthesize a well‐defined copper‐based boron imidazolate cage (BIF‐29) with six exposed mononuclear copper centers for the photocatalytic reduction of CO2. Theoretical calculations show a single Cu site including weak coordinated water delivers a new state in the conduction band near the Fermi level and stabilizes the *COOH intermediate. Steady‐state and time‐resolved fluorescence spectra show these Cu sites promote the separation of electron–hole pairs and electron transfer. As a result, the cage achieves solar‐driven reduction of CO2 to CO with an evolution rate of 3334 μmol g?1 h?1 and a high selectivity of 82.6 %.  相似文献   

9.
A novel dopant‐free TiO2 photocatalyst (Vo.‐TiO2), which is self‐modified by a large number of paramagnetic (single‐electron‐trapped) oxygen vacancies, was prepared by calcining a mixture of a porous amorphous TiO2 precursor, imidazole, and hydrochloric acid at elevated temperature (450 °C) in air. Control experiments demonstrate that the porous TiO2 precursor, imidazole, and hydrochloric acid are all necessary for the formation of Vo.‐TiO2. Although the synthesis of Vo.‐TiO2 originates from such a multicomponent system, this synthetic approach is facile, controllable, and reproducible. X‐ray diffraction, XPS, and EPR spectroscopy reveal that the Vo.‐TiO2 material with a high crystallinity embodies a mass of paramagnetic oxygen vacancies, and is free of other dopant species such as nitrogen and carbon. UV/Vis diffuse‐reflectance spectroscopy and photoelectrochemical measurement demonstrate that Vo.‐TiO2 is a stable visible‐light‐responsive material with photogenerated charge separation efficiency higher than N‐TiO2 and P25 under visible‐light irradiation. The Vo.‐TiO2 material exhibits not only satisfactory thermal‐ and photostability, but also superior photocatalytic activity for H2 evolution (115 μmol h?1 g?1) from water with methanol as sacrificial reagent under visible light (λ>400 nm) irradiation. Furthermore, the effects of reaction temperature, ratio of starting materials (imidazole:TiO2 precursor) and calcination time on the photocatalytic activity and the microstructure of Vo.‐TiO2 were elucidated.  相似文献   

10.
A straightforward aqueous synthesis of MoO3?x nanoparticles at room temperature was developed by using (NH4)6Mo7O24?4 H2O and MoCl5 as precursors in the absence of reductants, inert gas, and organic solvents. SEM and TEM images indicate the as‐prepared products are nanoparticles with diameters of 90–180 nm. The diffuse reflectance UV‐visible‐near‐IR spectra of the samples indicate localized surface plasmon resonance (LSPR) properties generated by the introduction of oxygen vacancies. Owing to its strong plasmonic absorption in the visible‐light and near‐infrared region, such nanostructures exhibit an enhancement of activity toward visible‐light catalytic hydrogen generation. MoO3?x nanoparticles synthesized with a molar ratio of MoVI/MoV 1:1 show the highest yield of H2 evolution. The cycling catalytic performance has been investigated to indicate the structural and chemical stability of the as‐prepared plasmonic MoO3?x nanoparticles, which reveals its potential application in visible‐light catalytic hydrogen production.  相似文献   

11.
BiOBr containing surface oxygen vacancies (OVs) was prepared by a simple solvothermal method and combined with graphitic carbon nitride (g‐C3N4) to construct a heterojunction for photocatalytic oxidation of nitric oxide (NO) and reduction of carbon dioxide (CO2). The formation of the heterojunction enhanced the transfer and separation efficiency of photogenerated carriers. Furthermore, the surface OVs sufficiently exposed catalytically active sites, and enabled capture of photoexcited electrons at the surface of the catalyst. Internal recombination of photogenerated charges was also limited, which contributed to generation of more active oxygen for NO oxidation. Heterojunction and OVs worked together to form a spatial conductive network framework, which achieved 63 % NO removal, 96 % selectivity for carbonaceous products (that is, CO and CH4). The stability of the catalyst was confirmed by cycling experiments and X‐ray diffraction and transmission electron microscopy after NO removal.  相似文献   

12.
As electron transfer to CO2 is generally considered to be the critical step during the activation of CO2, it is important to develop approaches to engineer the electronic properties of catalysts to improve their performance in CO2 electrochemical reduction. Herein, we developed an efficient strategy to facilitate CO2 activation by introducing oxygen vacancies into electrocatalysts with electronic‐rich surface. ZnO nanosheets rich in oxygen vacancies exhibited a current density of ?16.1 mA cm?2 with a Faradaic efficiency of 83 % for CO production. Based on density functional theory (DFT) calculations, the introduction of oxygen vacancies increased the charge density of ZnO around the valence band maximum, resulting in the enhanced activation of CO2. Mechanistic studies further revealed that the enhancement of CO production by introducing oxygen vacancies into ZnO nanosheets originated from the increased binding strength of CO2 and the eased CO2 activation.  相似文献   

13.
Limited by the relatively sluggish charge‐carrier separation in semiconductors, the photocatalytic performance is still far below what is expected. Herein, a model of ZnIn2S4 (ZIS) nanosheets with oxygen doping is put forward to obtain in‐depth understanding of the role that doping atoms play in photocatalysis. It shows enhanced photocatalytic activity compared with pristine ZIS. The electron dynamics analyzed by ultrafast transient absorption spectroscopy reveals that the average recovery lifetime of photoexcited electrons is increased by 1.53 times upon oxygen incorporation into the ZIS crystals, indicating enhanced separation of photoexcited carriers in oxygen‐doped ZIS nanosheets. As expected, the oxygen‐doped ZIS nanosheets show a remarkably improved photocatalytic activity with a hydrogen evolution rate of up to 2120 μmol h?1 g?1 under visible‐light irradiation, which is 4.5 times higher than that of the pristine ZIS nanosheets.  相似文献   

14.
The electronic structure and photoactivation process in N‐doped TiO2 is investigated. Diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and electron paramagnetic resonance (EPR) are employed to monitor the change of optical absorption ability and the formation of N species and defects in the heat‐ and photoinduced N‐doped TiO2 catalyst. Under thermal treatment below 573 K in vacuum, no nitrogen dopant is removed from the doped samples but oxygen vacancies and Ti3+ states are formed to enhance the optical absorption in the visible‐light region, especially at wavelengths above 500 nm with increasing temperature. In the photoactivation processes of N‐doped TiO2, the DRS absorption and PL emission in the visible spectral region of 450–700 nm increase with prolonged irradiation time. The EPR results reveal that paramagnetic nitrogen species (Ns.), oxygen vacancies with one electron (Vo.), and Ti3+ ions are produced with light irradiation and the intensity of Ns. species is dependent on the excitation light wavelength and power. The combined characterization results confirm that the energy level of doped N species is localized above the valence band of TiO2 corresponding to the main absorption band at 410 nm of N‐doped TiO2, but oxygen vacancies and Ti3+ states as defects contribute to the visible‐light absorption above 500 nm in the overall absorption of the doped samples. Thus, a detailed picture of the electronic structure of N‐doped TiO2 is proposed and discussed. On the other hand, the transfer of charge carriers between nitrogen species and defects is reversible on the catalyst surface. The presence of oxygen‐vacancy‐related defects leads to quenching of paramagnetic Ns. species but they stabilize the active nitrogen species Ns?.  相似文献   

15.
The reduced graphene oxide‐Bi2WO6 (rGO‐BWO) photocatalysts with the different RF/O values (molar ratio of the F molar mass and the O's molar mass of Bi2WO6) had been successfully synthesized via one‐step hydrothermal method. The F‐doped rGO‐BWO samples were characterized by X‐ray diffraction patterns (XRD), field‐emission scanning electron microscopy (FE‐ESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller surface area (BET), X‐ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectra (DRS). The results indicate that F? ions had been successfully doped into rGO‐BWO samples. With the increasing of the RF/O values from 0 to 2%, the evident change of the morphology and the absorption edges of F‐doped rGO‐BWO samples and the photocatalytic activities had been enhanced. Moreover, the photocatalytic activity of F‐doped rGO‐BWO with RF/O = 0.05 were better than rGO‐BWO and the other F‐doped rGO‐BWO under 500 W Xe lamp light irradiation. The enhanced photocatalytic activity can be attributed to the morphology of the intact microsphere that signify the bigger specific surface area for providing more possible reaction sites for the adsorption–desorption equilibrium of photocatalytic reaction, the introduction of F? ions that may cause the enhancement of surface acidity and creation of oxygen vacancies under visible light irradiation, the narrower band gap which means needing less energy for the electron hole pair transition.  相似文献   

16.
Hierarchical FeCoS2–CoS2 double‐shelled nanotubes have been rationally designed and constructed for efficient photocatalytic CO2 reduction under visible light. The synthetic strategy, engaging the two‐step cation‐exchange reactions, precisely integrates two metal sulfides into a double‐shelled tubular heterostructure with both of the shells assembled from ultrathin two‐dimensional (2D) nanosheets. Benefiting from the distinctive structure and composition, the FeCoS2–CoS2 hybrid can reduce bulk‐to‐surface diffusion length of photoexcited charge carriers to facilitate their separation. Furthermore, this hybrid structure can expose abundant active sites for enhancing CO2 adsorption and surface‐dependent redox reactions, and harvest incident solar irradiation more efficiently by light scattering in the complex interior. As a result, these hierarchical FeCoS2–CoS2 double‐shelled nanotubes exhibit superior activity and high stability for photosensitized deoxygenative CO2 reduction, affording a high CO‐generating rate of 28.1 μmol h?1 (per 0.5 mg of catalyst).  相似文献   

17.
Visible‐light‐driven photoreduction of CO2 to energy‐rich chemicals in the presence of H2O without any sacrifice reagent is of significance, but challenging. Herein, Eosin Y‐functionalized porous polymers (PEosinY‐N, N=1–3), with high surface areas up to 610 m2 g?1, are reported. They exhibit high activity for the photocatalytic reduction of CO2 to CO in the presence of gaseous H2O, without any photosensitizer or sacrifice reagent, and under visible‐light irradiation. Especially, PEosinY‐1 derived from coupling of Eosin Y with 1,4‐diethynylbenzene shows the best performance for the CO2 photoreduction, affording CO as the sole carbonaceous product with a production rate of 33 μmol g?1 h?1 and a selectivity of 92 %. This work provides new insight for designing and fabricating photocatalytically active polymers with high efficiency for solar‐energy conversion.  相似文献   

18.
Electrochemical reduction of CO2 into energy‐dense chemical feedstock and fuels provides an attractive pathway to sustainable energy storage and artificial carbon cycle. Herein, we report the first work to use atomic Ir electrocatalyst for CO2 reduction. By using α‐Co(OH)2 as the support, the faradaic efficiency of CO could reach 97.6 % with a turnover frequency (TOF) of 38290 h?1 in aqueous electrolyte, which is the highest TOF up to date. The electrochemical active area is 23.4‐times higher than Ir nanoparticles (2 nm), which is highly conductive and favors electron transfer from CO2 to its radical anion (CO2.?). Moreover, the more efficient stabilization of CO2.? intermediate and easy charge transfer makes the atomic Ir electrocatalyst facilitate CO production. Hence, α‐Co(OH)2‐supported atomic Ir electrocatalysts show enhanced CO2 activity and stability.  相似文献   

19.
构建氧空位以及附着金属单质Bi(Bi0)是增强半导体材料光吸收性能、促进半导体光生载流子分离的有效方法。通过简单的共沉淀法及氢气热还原成功制备了PO43-掺杂Bi2O2CO3附着Bi0(Bi-P-BOC)的可见光催化剂,并对其在可见光下催化降解氧氟沙星(OFX)的性能及机理进行了研究。材料表征结果表明BOC随着PO43-的均匀掺杂,可见光吸收能力增强,表面缺陷增多,比表面积增大。而随着氢气热还原,BOC表面形成Bi0的同时也原位构建了大量的氧空位。可见光催化性能测试表明,Bi-P-BOC可以在180 min内降解约85%的OFX,降解速率为0.013 0 min-1,是BOC降解速率的8倍。Bi-P-BOC光催化降解机理表明其具有更好的可见光吸收能力,Bi0以及氧空位的存在促进了光生载流子的分离,h+是其...  相似文献   

20.
It is highly desirable but challenging to optimize the structure of photocatalysts at the atomic scale to facilitate the separation of electron–hole pairs for enhanced performance. Now, a highly efficient photocatalyst is formed by assembling single Pt atoms on a defective TiO2 support (Pt1/def‐TiO2). Apart from being proton reduction sites, single Pt atoms promote the neighboring TiO2 units to generate surface oxygen vacancies and form a Pt‐O‐Ti3+ atomic interface. Experimental results and density functional theory calculations demonstrate that the Pt‐O‐Ti3+ atomic interface effectively facilitates photogenerated electrons to transfer from Ti3+ defective sites to single Pt atoms, thereby enhancing the separation of electron–hole pairs. This unique structure makes Pt1/def‐TiO2 exhibit a record‐level photocatalytic hydrogen production performance with an unexpectedly high turnover frequency of 51423 h?1, exceeding the Pt nanoparticle supported TiO2 catalyst by a factor of 591.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号