首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous enantioselective Pd0‐catalyzed C?H activation reactions proceeding via the concerted metalation‐deprotonation mechanism employed either a chiral ancillary ligand, a chiral base, or a bimolecular mixture thereof. This study describes the development of new chiral bifunctional ligands based on a binaphthyl scaffold which incorporates both a phosphine and a carboxylic acid moiety. The optimal ligand provided high yields and enantioselectivities for a desymmetrizing C(sp2)?H arylation leading to 5,6‐dihydrophenanthridines, whereas the corresponding monofunctional ligands showed low enantioselectivities. The bifunctional system proved applicable to a range of substituted dihydrophenanthridines, and allowed the parallel kinetic resolution of racemic substrates.  相似文献   

2.
Reported herein is a palladium‐catalyzed, directed γ‐C(sp3)?H arylation of protected thiols. The key is to utilize Michael acceptors as a dual reagent to install a protecting/directing group on thiols by a thiol‐Michael click reaction, and remove it later under basic conditions. The C?H arylation proceeds with high functional‐group tolerance and the deprotected thiols can be further transformed into other sulfur‐containing compounds. This unique mode of activation could open the door for site‐selective functionalization of thiols or other sulfur‐containing compounds at unactivated positions.  相似文献   

3.
The Pd0‐catalyzed C(sp3)‐H arylation of 2‐bromo‐N‐methylanilides leads to unstable benzazetidine intermediates that rearrange to benzoxazines through 4π electrocyclic ring‐opening and 6π electrocyclization. The introduction of a bulky, non‐activatable amide group on the nitrogen atom was key to favor the challenging reductive elimination step and disfavor undesired reaction pathways.  相似文献   

4.
The use of chiral transient directing groups (TDGs) is a promising approach for developing PdII‐catalyzed enantioselective C(sp3)?H activation reactions. However, this strategy is challenging because the stereogenic center on the TDG is often far from the C?H bond, and both TDG covalently attached to the substrate and free TDG are capable of coordinating to PdII centers, which can result in a mixture of reactive complexes. We report a PdII‐catalyzed enantioselective β‐C(sp3)?H arylation reaction of aliphatic ketones using a chiral TDG. A chiral trisubstituted cyclobutane was efficiently synthesized from a mono‐substituted cyclobutane through sequential C?H arylation reactions, thus demonstrating the utility of this method for accessing structurally complex products from simple starting materials. The use of an electron‐deficient pyridone ligand is crucial for the observed enantioselectivity. Interestingly, employing different silver salts can reverse the enantioselectivity.  相似文献   

5.
PdII‐catalyzed C(sp3)?H arylation of saturated heterocycles with a wide range of aryl iodides is enabled by an N‐heterocyclic carbene (NHC) ligand. A C(sp3)?H insertion step by the PdII/NHC complex in the absence of ArI is demonstrated experimentally for the first time. Experimental data suggests that the previously established NHC‐mediated Pd0/PdII catalytic manifold does not operate in this reaction. This transformation provides a new approach for diversifying pharmaceutically relevant piperidine and tetrahydropyran ring systems.  相似文献   

6.
The palladium‐catalyzed asymmetric side‐chain C(α)‐allylation of 2‐alkylpyridines, without using an external base, was developed. The high linear selectivities and enantioselectivities were achieved using new chiral diamidophosphite monodentate ligands. Given that the reaction conditions do not require an external base, this catalyst system enabled chemoselective C(α)‐allylation of 2‐alkylpyridines containing α‐carbonyl C?H bonds, which are more acidic than α‐pyridyl C?H bonds.  相似文献   

7.
Fluorine is known to promote ortho‐C?H metalation. Based upon this reactivity, we employed an activated norbornene that traps the ortho‐palladation intermediate and is then relayed to the meta position, leading to meta‐selective C?H arylation of fluoroarenes. Deuterium experiment suggests that this meta‐arylation is initiated by ortho C?H activation and the catalytic cycle is terminated by C‐2 protonation. A dual‐ligand system is crucial for the observed high reactivity and site selectivity. Applying this approach to simple benzene or other arenes also affords arylation products with good yield and site selectivity.  相似文献   

8.
We report the ligand‐enabled C?H activation/olefination of free carboxylic acids in the γ‐position. Through an intramolecular Michael addition, δ‐lactones are obtained as products. Two distinct ligand classes are identified that enable the challenging palladium‐catalyzed activation of free carboxylic acids in the γ‐position. The developed protocol features a wide range of acid substrates and olefin reaction partners and is shown to be applicable on a preparatively useful scale. Insights into the underlying reaction mechanism obtained through kinetic studies are reported.  相似文献   

9.
Metal‐catalyzed intramolecular C?H amination of alkyl azides constitutes an appealing approach to alicyclic amines; challenges remain in broadening substrate scope, enhancing regioselectivity, and applying the method to natural product synthesis. Herein we report an iron(III) porphyrin bearing axial N‐heterocyclic carbene ligands which catalyzes the intramolecular C(sp3)–H amination of a wide variety of alkyl azides under microwave‐assisted and thermal conditions, resulting in selective amination of tertiary, benzylic, allylic, secondary, and primary C?H bonds with up to 95 % yield. 14 out of 17 substrates were cyclized selectively at C4 to give pyrrolidines. The regioselectivity at C4 or C5 could be tuned by modifying the reactivity of the C5–H bond. Mechanistic studies revealed a concerted or a fast re‐bound mechanism for the amination reaction. The reaction has been applied to the syntheses of tropane, nicotine, cis‐octahydroindole, and leelamine derivatives.  相似文献   

10.
Herein, we report the palladium‐catalyzed direct arylation of unactivated aliphatic C?H bonds in free primary amines. This method takes advantage of an exo‐imine‐type directing group (DG) that can be generated and removed in situ. A range of unprotected aliphatic amines are suitable substrates, undergoing site‐selective arylation at the γ‐position. Methyl as well as cyclic and acyclic methylene groups can be activated. Furthermore, when aniline‐derived substrates were used, preliminary success with δ‐C?H arylation was achieved. The feasibility of using the DG component in a catalytic fashion was also demonstrated.  相似文献   

11.
A palladium(II)‐catalyzed thioketone‐chelation‐assisted direct C?H arylation of ferrocenes is described. With thioketone as an efficient directing group, various monoaryl‐ and diaryl‐substituted thiocarbonylferrocenes were obtained by palladium‐catalyzed direct C?H functionalization in high yields under mild and base‐free reaction conditions. Furthermore, the arylated thiocarbonylferrocene could undergo diverse transformations.  相似文献   

12.
Water‐soluble arene–ruthenium complexes coordinated with readily available aniline‐based ligands were successfully employed as highly active catalysts in the C?H bond activation and arylation of 2‐phenylpyridine with aryl halides in water. A variety of (hetero)aryl halides were also used for the ortho‐C?H bond arylation of 2‐phenylpyridine to afford the corresponding ortho‐ monoarylated products as major products in moderate to good yields. Our investigations, including time‐scaled NMR spectroscopy and mass spectrometry studies, evidenced that the coordinating aniline‐based ligands, having varying electronic and steric properties, had a significant influence on the catalytic activity of the resulting arene–ruthenium–aniline‐based complexes. Moreover, mass spectrometry identification of the cycloruthenated species, {(η6‐arene)Ru(κ2C,N‐phenylpyridine)}+, and several ligand‐coordinated cycloruthenated species, such as [(η6‐arene)Ru(4‐methylaniline)(κ2C,N‐phenylpyridine)]+, found during the reaction of 2‐phenylpyridine with the arene–ruthenium–aniline complexes further authenticated the crucial roles of these species in the observed highly active and tuned catalyst. At last, the structures of a few of the active catalysts were also confirmed by single‐crystal X‐ray diffraction studies.  相似文献   

13.
In recent years, transition‐metal‐catalyzed C?H activation has become a key strategy in the field of organic synthesis. Rhodium complexes are widely used as catalysts in a variety of C?H functionalization reactions because of their high reactivity and selectivity. The availability of a number of rhodium complexes in various oxidation states enables diverse reaction patterns to be obtained. Regioselectivity, an important issue in C?H activation chemistry, can be accomplished by using a directing group to assist the reaction. However, to obtain the target functionalized compounds, it is also necessary to use a directing group that can be easily removed. A wide range of directed C?H functionalization reactions catalyzed by rhodium complexes have been reported to date. In this Review, we discuss Rh‐catalyzed C?H functionalization reactions that are aided by the use of a removable directing group such as phenol, amine, aldehyde, ketones, ester, acid, sulfonic acid, and N‐heteroaromatic derivatives.  相似文献   

14.
Chemoselective C?H arylations were accomplished through micellar catalysis by a versatile single‐component ruthenium catalyst. The strategy provided expedient access to C?H‐arylated ferrocenes with wide functional‐group tolerance and ample scope through weak chelation assistance. The sustainability of the C?H arylation was demonstrated by outstanding atom‐economy and recycling studies. Detailed computational studies provided support for a facile C?H activation through thioketone assistance.  相似文献   

15.
An efficient thioglycosylation of C(sp2)?H bonds with thiosugars has been established for the first time. Using only Cu(OAc)2?H2O as a catalyst and Ag2CO3 as an additive in DMSO, the protocol proved to have broad scope, and a variety of complex thioglycosides have been prepared in good yields with exclusive β‐selectivity.  相似文献   

16.
A continuous‐flow synthesis of aziridines by palladium‐catalyzed C(sp3)?H activation is described. The new flow reaction could be combined with an aziridine‐ring‐opening reaction to give highly functionalized aliphatic amines through a consecutive process. A predictive mechanistic model was developed and used to design the C?H activation flow process and illustrates an approach towards first‐principles design based on novel catalytic reactions.  相似文献   

17.
Enantioselective functionalizations of unbiased methylene C(sp3)?H bonds of linear systems by metal insertion are intrinsically challenging and remain a largely unsolved problem. Herein, we report a palladium(II)‐catalyzed enantioselective arylation of unbiased methylene β‐C(sp3)?H bonds enabled by the combination of a strongly coordinating bidentate PIP auxiliary with a monodentate chiral phosphoric acid (CPA). The synergistic effect between the PIP auxiliary and the non‐C2‐symmetric CPA is crucial for effective stereocontrol. A broad range of aliphatic carboxylic acids and aryl bromides can be used, providing β‐arylated aliphatic carboxylic acid derivatives in high yields (up to 96 %) with good enantioselectivities (up to 95:5 e.r.). Notably, this reaction also represents the first palladium(II)‐catalyzed enantioselective C?H activation with less reactive and cost‐effective aryl bromides as the arylating reagents. Mechanistic studies suggest that a single CPA is involved in the stereodetermining C?H palladation step.  相似文献   

18.
A palladium‐catalyzed arylation of unactivated γmethylene C(sp3)?H and remote δ‐C?H bonds by using an oxazoline‐carboxylate directing group has been developed. Arylation occurs with a broad substrate scope and high tolerance of functional groups (i.e., halogen, nitro, cyano, ether, trifluoromethyl, amine, and ester). The oxazoline‐type auxiliary can be removed under acidic conditions.  相似文献   

19.
Reported herein is an unprecedented copper‐catalyzed arylation of remote C(sp3)?H bonds. Stirring a trifluorotoluene solution of either N‐fluorocarboxamides or N‐fluorosulfonamides and arylboronic acids in the presence of a catalytic amount of copper(II) trifluoroacetylacetonate, 2,2′‐bipyridine, and sodium tert‐butoxide afforded the γ‐ and δ‐C(sp3)?H arylated carboxamides and sulfonamides, respectively, in good to high yields. Mechanistic studies indicate that the reaction might proceed through an amidyl radical generation, 1,5‐hydrogen atom transfer (HAT), and copper‐catalyzed cross‐coupling of the resulting carbon radical with arylboronic acids.  相似文献   

20.
Atropo‐enantioselective C?H functionalization reactions are largely limited to the dynamic kinetic resolution of biaryl substrates through the introduction of steric bulk proximal to the axis of chirality. Reported herein is a highly atropo‐enantioselective palladium(0)‐catalyzed methodology that forges the axis of chirality during the C?H functionalization process, enabling the synthesis of axially chiral dibenzazepinones. Computational investigations support experimentally determined racemization barriers, while also indicating C?H functionalization proceeds by an enantio‐determining CMD to yield configurationally stable eight‐membered palladacycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号