首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A diphenylalanine derivative, N3‐Phe‐Phe‐NHCH2CCH, was designed for topochemical azide–alkyne cycloaddition (TAAC) polymerization. This dipeptide adopted β‐sheet arrangement as designed, in its crystals, but the azide and alkyne were not fitly aligned for their topochemical reaction. However, the voids present around these groups allowed them to attain a reactive geometry upon heating and their consequent TAAC polymerization to a pseudoprotein in a single‐crystal‐to‐single‐crystal (SCSC) fashion. This motion led to the creation of channels in the product crystal and it absorbed water from the surroundings to fill these channels as H‐bonded water wire. The pseudoprotein undergo reversible hydration/dehydration in SCSC fashion many times under mild conditions: hydration at low relative humidity and dehydration at low temperature. Vapor sorption analyses suggest that this fully organic polymer might be useful as an energy‐efficient desiccant material for controlling indoor humidity.  相似文献   

2.
A diphenylalanine derivative, N3‐Phe‐Phe‐NHCH2CCH, was designed for topochemical azide–alkyne cycloaddition (TAAC) polymerization. This dipeptide adopted β‐sheet arrangement as designed, in its crystals, but the azide and alkyne were not fitly aligned for their topochemical reaction. However, the voids present around these groups allowed them to attain a reactive geometry upon heating and their consequent TAAC polymerization to a pseudoprotein in a single‐crystal‐to‐single‐crystal (SCSC) fashion. This motion led to the creation of channels in the product crystal and it absorbed water from the surroundings to fill these channels as H‐bonded water wire. The pseudoprotein undergo reversible hydration/dehydration in SCSC fashion many times under mild conditions: hydration at low relative humidity and dehydration at low temperature. Vapor sorption analyses suggest that this fully organic polymer might be useful as an energy‐efficient desiccant material for controlling indoor humidity.  相似文献   

3.
Mechanical twinning changes atomic, molecular, and crystal orientations along with directions of the anisotropic properties of the crystalline materials while maintaining single crystallinity in each domain. However, such deformability has been less studied in brittle organic crystals despite their remarkable anisotropic functions. Herein we demonstrate a direction‐dependent mechanical twinning that shows superelasticity in one direction and ferroelasticity in two other directions in a single crystal of 1,3‐bis(4‐methoxyphenyl)urea. The crystal can undergo stepwise twinning and ferroelastically forms various shapes with multiple domains oriented in different directions, thereby affording a crystal that shows superelasticity in multiple directions. This adaptability and shape recoverability in a ferroelastic and superelastic single crystal under ambient conditions are of great importance in future applications of organic crystals as mechanical materials, such as in soft robotics.  相似文献   

4.
Getting suitable crystals for single‐crystal X‐ray crystallographic analysis still remains an art. Obtaining single crystals of metal–organic frameworks (MOFs) containing organic polymers poses even greater challenges. Here we demonstrate the formation of a syndiotactic organic polymer ligand inside a MOF by quantitative [2+2] photopolymerization reaction in a single‐crystal‐to‐single‐crystal manner. The spacer ligands with trans,trans,trans‐conformation in the pillared‐layer MOF with guest water molecules in the channels, undergo pedal motion to trans,cis,trans‐conformation prior to [2+2] photo‐cycloaddition reaction and yield single crystals of MOF containing two‐dimensional coordination polymers fused with the organic polymer ligands. We also show that the organic polymer in the single crystals can be depolymerized reversibly by cleaving the cyclobutane rings upon heating. These MOFs also show interesting photoluminescent properties and sensing of small organic molecules.  相似文献   

5.
The molecular‐level motions of a coronene‐based supramolecular rotator are amplified into macroscopic changes of crystals by co‐assembly of coronene and TCNB (1,2,4,5‐tetracyanobenzene) into a charge‐transfer complex. The as‐prepared cocrystals show remarkable self‐healing behavior and thermo‐mechanical responses during thermally‐induced reversible single‐crystal‐to‐single‐crystal (SCSC) phase transitions. Comprehensive analysis of the microscopic observations as well as differential scanning calorimetry (DSC) measurements and crystal habits reveal that a thermally‐reduced‐rate‐dependent dynamic character exists in the phase transition. The crystallographic studies show that the global similarity of the packing patterns of both phases with local differences, such as molecular stacking sequence and orientations, should be the origin of the self‐healing behavior of these crystals.  相似文献   

6.
Like silicon, single crystals of organic semiconductors are pursued to attain intrinsic charge transport properties. However, they are intolerant to mechanical deformation, impeding their application in flexible electronic devices. Such contradictory properties, namely exceptional molecular ordering and mechanical flexibility, are unified in this work. We found that bis(triisopropylsilylethynyl)pentacene (TIPS‐P) crystals can undergo mechanically induced structural transitions to exhibit superelasticity and ferroelasticity. These properties arise from cooperative and correlated molecular displacements and rotations in response to mechanical stress. By utilizing a bending‐induced ferroelastic transition of TIPS‐P, flexible single‐crystal electronic devices were obtained that can tolerate strains (?) of more than 13 % while maintaining the charge carrier mobility of unstrained crystals (μ>0.7 μ0). Our work will pave the way for high‐performance ultraflexible single‐crystal organic electronics for sensors, memories, and robotic applications.  相似文献   

7.
Ferroelasticity has been reported for several types of molecular crystals, which show mechanical‐stress‐induced shape change under twinning and/or spontaneous formation of strain. Aiming to create materials that exhibit both ferroelasticity and light‐emission characteristics, we discovered the first examples of ferroelastic luminescent organometallic crystals. Crystals of arylgold(I)(N‐heterocyclic carbene)(NHC) complexes bend upon exposure to anisotropic mechanical stress. X‐ray diffraction analyses and stress‐strain measurements on these ferroelastic crystals confirmed typical ferroelastic behavior, mechanical twinning, and the spontaneous build‐up of strain. A comparison with single‐crystal structures of related gold‐NHC complexes that do not show ferroelasticity shed light on the structural origins of the ferroelastic behavior.  相似文献   

8.
This study introduced hydrophobic silica nanoparticles (SiNPs) into an interface of aqueous and hydrate‐forming oil phases and analyzed the inhibition of hydrate crystal growth after seeding the hydrate slurry. The hydrate inhibition performance was quantitatively identified by micro‐differential scanning calorimetry (micro‐DSC) experiments. Through the addition of 1.0 wt % of SiNPs into the water–oil interface, the hydrate crystal growth only occurred around the seeding position of cyclopentane (CP) hydrate slurry, and the growth of hydrate crystals was retarded. Upon a further increase in the SiNP concentration up to 2.0 wt %, the SiNP‐laden interface completely prevented hydrate growth. We observed a hollow conical shape of hydrate crystals with 0.0 and 1.0 wt % of SiNPs, respectively, but the size and shape of the conical crystals was shrunken at 1.0 wt % of silica nanoparticles. However, the conical shape did not appear with an increased nanoparticle concentration of 2 wt %. These findings can provide insight into hydrate inhibition in oil and gas delivery lines, possibly with nanoparticles.  相似文献   

9.
Preparation of large single crystals of linear polymers for X‐ray analysis is very challenging. Herein, we employ a coordination‐driven self‐assembly strategy to secure the appropriate head‐to‐tail alignment of anthracene moieties, and for the first time obtained large‐sized Pt‐based linear polymer crystals through a [4+4] cycloaddition of anthracene in a single‐crystal to single‐crystal fashion. Using X‐ray diffraction to determine the polymer crystal structure, we found that both the polymerisation and depolymerisation steps proceed via a stable intermediate. Taking advantage of the temperature‐dependent slow depolymerization, the Pt‐based linear polymer showed potential as a sustained release anticancer drug platform. Utilizing the reversible contraction effect of unit‐cell volume upon irradiation or heating, the stimuli‐responsive crystals were hybridized with polyvinylidene fluoride to obtain a “smart material” with outstanding photoactuator performance.  相似文献   

10.
Upon warming to 225 K, single crystals of 11‐bromoundecanoyl peroxide (BrUP), in which radicals have been created by photolysis at lower temperature, undergo partial decomposition by a radical chain reaction ca. 40 cycles long. FTIR allowed monitoring two chain products: CO2 and an α‐lactone that decomposes further at 260 K. When initiation is confined to alternate molecular layers by polarized photoselection, the chain reaction reduces the crystal symmetry from tetragonal to monoclinic. Desymmetrization is easily observed by optical microscopy, although it is difficult to detect by X‐ray diffraction. Accurate monitoring of birefringence using a Sénarmont 1/4‐wave plate, and comparison with FTIR kinetics, proves that the chain reaction occurs within single molecular layers 2 nm thick.  相似文献   

11.
Photomechanical molecular crystals can undergo a variety of light‐induced motions, including expansion, bending, twisting, and jumping. The use of more complex crystal shapes may provide ways to turn these motions into useful work. To generate such shapes, pH‐driven reprecipitation has been used to grow branched microcrystals of the anthracene derivative 4‐fluoroanthracenecarboxylic acid. When these microcrystals are illuminated with light of λ=405 nm, an intermolecular [4+4] photodimerization reaction drives twisting and bending of the individual branches. These deformations drive a rotation of the overall crystal that can be repeated over multiple exposures to light. The magnitude and direction of this rotation vary because of differences in the crystal shape, but a typical branched crystal undergoes a 50° net rotation after 25 consecutive irradiations for 1 s. The ability of these crystals to undergo ratchet‐like rotation is attributed to their chiral shape.  相似文献   

12.
To synthesize a fully organic 1D polymer in a novel twist‐stacked topology, we designed a peptide monomer HC≡CCH2‐NH‐Ile‐Leu‐N3, which crystallizes with its molecules H‐bonded along a six‐fold screw axis. These H‐bonded columns pack parallelly such that molecules arrange head‐to‐tail, forming linear non‐covalent chains in planes perpendicular to the screw axis. The chains arrange parallelly to form molecular layers which twist‐stack along the screw axis. Crystals of this monomer, on heating, undergo single‐crystal‐to‐single‐crystal (SCSC) topochemical azide–alkyne cycloaddition (TAAC) polymerization to yield an exclusively 1,4‐triazole‐linked polymer in a twist‐stacked layered topology. This topologically defined polymer shows better mechanical strength and thermal stability than its unordered form, as evidenced by nanoindentation studies and thermogravimetric analysis, respectively. This work illustrates the scope of topochemical polymerizations for synthesizing polymers in pre‐decided topologies.  相似文献   

13.
Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm×12 mm×8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied.  相似文献   

14.
Simultaneous Differential Thermal Analysis/Thermogravimetric experiments carried out on one large single crystal, several small single crystals and powdered crystals of pentahydrate copper sulphate have been used to demonstrate the role that retained liquid water plays in maintaining crystal morphology during dehydration. Measured activation energies for stepwise dehydration in the system show the presence of solution-based transformations provide lower energy paths for the dehydration steps and stress relieving mechanisms. Skeletal anhydrous crystals from large-sized pentahydrate copper sulphate have the same morphology as the starting crystal on complete dehydration at controlled heating rates as long as a solution phase is maintained within the crystal during decomposition. The athermal activation energies, in this work, are in agreement with those obtained by isothermal methods as long as coincident reaction paths for the two techniques are maintained. The literature has been reviewed in the light of this work and a three-stage process is presented to rationalise the conflicting information obtained by workers using a variety of different experimental techniques.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

15.
Crystals of the layered metal organic framework solid Pb[B(Im)4](NO3)(nH2O) can undergo exchange of the nitrate for perrhenate, a model for pertechnetate, forming Pb[B(Im)4](ReO4). We can monitor this reaction by 207Pb solid-state NMR and can isolate single crystals of the resultant material through growth in the presence of an excess of perrhenate. Such a synthetic metal-organic framework solid represents a new candidate for pertechnetate-sequestering materials.  相似文献   

16.
K2TiSi3O9·H2O     
Single crystals of dipotassium titanium trisilicate hydrate were synthesized and the crystal structure was refined using data from single‐crystal X‐ray diffraction. The structure is a three‐dimensional mixed framework and contains channels formed by six‐ and eight‐membered rings. K+ ions and water mol­ecules are located in the channels.  相似文献   

17.
Here it is reported that crystals of an enantiopure [7]helquat salt undergo reversible thermal solid–solid phase transition at 404 K. Differential scanning calorimetry (DSC), capillary electrophoresis (CE), and X‐ray diffraction analysis were used to unravel the mechanistic details of this process. The single‐crystal‐to‐single‐crystal course enabled direct monitoring of the structural changes by in situ variable‐temperature X‐ray diffraction, thus providing the first direct evidence of a solid phase transition in a helicene‐like compound.  相似文献   

18.
A compact donor–acceptor molecular dyad has been synthesized by attaching an N,N‐dimethylamino fragment to a naphthalic anhydride residue. The dyad shows fluorescence from an intramolecular charge‐transfer state (i.e., charge‐recombination fluorescence) in solution, with the photo‐physical properties being strongly dependent on the solvent polarity. Similar emission is seen for single crystals of the target compound, the molecules being aligned head‐to‐head, although time‐resolved emission profiles display dual‐exponential kinetics. A second polymorph with the head‐to‐tail alignment also gives rise to two lifetimes that differ somewhat from those of the first structure, which are assigned to bulk and surface‐bound molecules. Growing the crystal in the presence of Rhodamine B localizes the dye around the surface. Excitation of the crystal is followed by sub‐ps exciton migration along the aligned stacks, with occasional crossing to adjacent stacks and trapping at the surface. Rhodamine B present at very low levels acts as the acceptor for excitons entering the surface layer. Crystals embedded in a polyester resin form an artificial light‐harvesting antenna able to sensitize an amorphous silicon solar cell.  相似文献   

19.
Reaction of the zinc or magnesium formate dihydrates in formic acid under solvothermal conditions results in the formation of single crystals of the anhydrous metal(II) formates β‐Zn(OOCH)2 and β‐Mg(OOCH)2. Both structures form one‐dimensional chains of μ‐oxygen‐bridged metal atoms. Single crystal diffraction studies reveal that β‐zinc formate represents the first structure in which chains of oxygen‐bridged metal atoms are connected by alternating single, double and triple oxygen atom bridges resulting in the first observation of corner, edge and face sharing coordination octahedra within a single chain. Polycrystalline material can be obtained by dehydration reaction of zinc formate dihydrate. β‐magnesium formate is the crystalline product that is obtained by annealing the amorphous intermediate phase after dehydration of magnesium formate dihydrate.  相似文献   

20.
The synthesis of four shape‐persistent macrocycles with three 1,8‐diazaanthracene units each is reported ( 2 , 3 a – 3 c ). For two of them single crystals could be obtained and the structures in the crystal be solved. The structures reveal that macrocycle 2 self‐dimerizes in the solid state; surprisingly it also forms a stable dimer in solution. The reason for this is seen in unusually efficient dispersion interactions as a consequence of the large contact areas in the dimer. All macrocycles are assessed as to their applicability in lateral polymerizations in the single crystal as well as in solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号