首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
《化学:亚洲杂志》2017,12(20):2711-2719
Three hierarchical porous zeolites (H‐*BEA, H‐MTW, and H‐*MRE) were successfully synthesized with the assistance of designed cationic surfactants under hydrothermal synthesis conditions. The as‐synthesized zeolite samples can be easily regulated by changing the number of long hydrophobic n ‐alkyl chains. Also, we investigated the relationship between the length of the surfactant and the formation of the microporous structure of the zeolite. Furthermore, the alkylation of benzene with propene was performed as a probe reaction to evaluate the catalytic performance of the synthesized hierarchical zeolites. The resulting materials were characterized by using a complementary combination of techniques, that is, X‐ray powder diffraction, N2 adsorption–desorption isotherms, scanning electron microscopy, transmission electron microscopy, Fourier transform IR spectroscopy, 28Si and 27Al MAS NMR spectroscopies, thermogravimetric analysis, and computer simulation. These analysis results indicated that quaternary ammonium surfactants acted as organic structure‐directing agents (OSDAs) in the formation of these hierarchical zeolite samples, whether the surfactant had long hydrophobic tail groups or not. The simulation results indicated that the organic molecules with no long hydrophobic chain could lead to the synthesis of zeolite through charge control, and the hydrophobic molecules with long hydrophobic chains could form zeolites through orbital control. These hierarchical zeolites showed improved catalytic activity towards the industrially relevant alkylation of benzene with propene compared with conventional zeolites with the same frameworks. More importantly, the success of using quaternary ammonium surfactants with no hydrophobic n ‐alkyl tail group in the synthesis of hierarchically structured mesoporous zeolites provides a new pathway for the synthesis of hierarchical porous materials by a soft‐templating method.  相似文献   

2.
Complex DSC curves of water desorption from LiA, NaA and KA zeolites were resolved into the most probable elementary curves. The activation energies and transition temperatures of corresponding elementary processes were determined. On the basis of the results obtained a model is proposed for water binding to M+ A? zeolites with three different phases.  相似文献   

3.
The dehydration of ferric exchanged Y zeolites is studied by thermal analysis. Their DTA shows three endotherms in the temperature range 80–450°C. The order of reaction and apparent energies of activation are calculated using various equations. The order of dehydration is nearly one and the apparent energy of activation is 4–8 kcal mole?1. The effect of heating rate is studied. The energy of activation as determined by the Kissinger and Ozawa method is about 12 kcal mole?1, which is comparable with the heat of adsorption of water determined by the gravimetric method, and is more acceptable.  相似文献   

4.
New methylene blue (NMB) dye incorporated into AlMCM‐41 surfactant‐free and hybrid surfactant‐AlMCM‐41 mesophase. UV‐vis evidence shows that new methylene blue dye protonated in both cases of zeolites. New methylene blue is electroactive in zeolites and their electrochemical activity has been studied by cyclic voltammetry and compared to that of NMB in aqueous solutions. New methylene blue molecules are not released to the solution during CV measurements and are accessible to H3O+ ions. The presence of surfactant affects the kinetics of the redox process through proton ions diffusion. The midpoint potentials (Em) values show that new methylene blue dye incorporated into AlMCM‐41 can be reduced easily with respect to solution new methylene blue. New methylene blue interacting with surfactant polar heads and residual Br? ions as a results, it shows a couple of peaks in high potential with respect to new methylene blue solution. The electrode made with methylene blue‐AlMCM‐41 without surfactant was used for the mediated oxidation of ascorbic acid. The anodic peak current observed in cyclic voltammetry was linearly dependent on the ascorbic acid concentration. The calibration plot was linear over the ascorbic acid concentration range 1.0×10?5 to 5.0×10?4 M. The detection limit of the method is 1.0×10?5 M, low enough for trace ascorbic acid determination in various real samples.  相似文献   

5.
The adsorption and the mechanism of the oxidative dehydrogenation (ODH) of propane over VO2‐exchanged MCM‐22 are investigated by DFT calculations using the M06‐L functional, which takes into account dispersion contributions to the energy. The adsorption energies of propane are in good agreement with those from computationally much more demanding MP2 calculations and with experimental results. In contrast, B3LYP binding energies are too small. The reaction begins with the movement of a methylene hydrogen atom to the oxygen atom of the VO2 group, which leads to an isopropyl radical bound to a HO? V? O intermediate. This step is rate determining with the apparent activation energy of 30.9 kcal mol?1, a value within the range of experimental results for ODH over other silica supports. In the propene formation step, the hydroxyl group is the more reactive group requiring an apparent activation energy of 27.7 kcal mol?1 compared to that of the oxy group of 40.8 kcal mol?1. To take the effect of the extended framework into account, single‐point calculations on 120T structures at the same level of theory are performed. The apparent activation energy is reduced to 28.5 kcal mol?1 by a stabilizing effect caused by the framework. Reoxidation of the catalyst is found to be important for the product release at the end of the reaction.  相似文献   

6.
Pentasil zeolites of ZSM-5 type are synthesised hydrothermally using triethyl-n-proplyammonium bromide (TEPA-Br) and triethyl-n-butylammonium bromide (TEBA-Br). The crystallization kinetics, followed by XRD, SEM and thermal analysis, clearly demonstrate the influence of size and molecular weight of the templating quaternary ammonium cation (QAC) species on the rates of nucleation and crystallization. The values of the apparent activation energies for nucleation and crystal growth indicate that both nucleation and crystal growth are faster when TEPA-Br rather than TEBA-Br is used as a template. The quantitative identification of intergrown phases characterizes both the phases to be ZSM-5 zeolite. Thermoanalytical curves for both these zeolites in as-synthesised forms exhibit two-step oxidative decomposition of the occluded organic species. This suggests that the quaternary ammonium cation may be located at two energetically different sites within the zeolite channels. The equilibrium sorption capacity, however, is found to increase in the order of size and molecular weight of the templating species in both the zeolites. The nature of acid site distribution, obtained from the temperature programmed desorption of ammonia is found to be independent of the templating species used during the synthesis.  相似文献   

7.
Structures of Pd/zeolites immersed in solvents were measured by in situ X‐ray absorption fine structure (XAFS). Systematic studies revealed that the selection of an appropriate support (USY‐zeolite), thermal treatment temperature of USY, solvent (o‐xylene), H2 partial pressure (6 %), and the use of a Pd amine complex affect the structure of Pd. As a result, we found that monomeric Pd can be obtained in the USY support with H2 bubbling in o‐xylene. The structural properties of Pd correlate well with its catalytic performance in the Suzuki–Miyaura coupling reactions; a very high TON of up to 11 000 000 was obtained over the monomeric Pd.  相似文献   

8.
In this paper, an electrochemical application of bismuth‐film electrode (BiFE) fabricated via ex‐situ electrodeposition onto a glassy carbon electrode for testosterone determination was investigated in aqueous and aqueous/surfactant solutions. In cyclic voltammetry, the compound showed one irreversible and adsorption‐controlled reduction peak. The BiFE revealed good linear response in the examined concentration range of 1 to 45 nmol L?1 testosterone in Britton? Robinson buffer, pH 5.0 containing 3 mmol L?1 cetyltrimethylammonium bromide. The limit of detection was 0.3 nmol L?1 (0.09 ng mL?1). Finally, the BiFE was satisfactorily applied for quantitation of testosterone in both pharmaceutical (oil‐based ampoule) and biological (human urine) samples.  相似文献   

9.
Y型分子筛结构破坏的动力学分析(英文)   总被引:1,自引:0,他引:1  
Y型分子筛是催化裂化(FCC)的速率控制组分.FCC过程中,催化剂在反应器和再生器中往往面临高温水蒸气存在的苛刻环境.因此,分子筛的热稳定性和水热稳定性是催化剂最为关注的性能之一.由于FCC原料中通常含有V、Ni、Na、Fe等不同数量的金属污染物,会对催化剂造成污染及钝化.进料中存在的卟啉类有机复合物持续不断的沉积在催化剂表面,由于含钒的有机金属卟啉化合物在反应中转化形成V_2O_5,V_2O_5在水热条件下形成H_3VO_4组分,在高温水热气氛下加速分子筛骨架结构水解,破坏了Y型分子筛的晶体结构,从而降低了催化剂活性,影响产品选择性.稀土Y型分子筛在FCC中扮演重要的角色,稀土交换分子筛可以提高催化酸性、裂化活性和热与水热稳定性.此外,Na在高温水蒸气条件下也会对分子筛结构造成破坏.一方面,钠能够中和Y型分子筛B酸中心,降低催化裂化活性;另一方面,水热条件下钠的存在会加速破坏Y型分子筛的结构.有关Y型分子筛结构破坏的机理解释较多,然而该过程的动力学研究鲜有报道.反应动力学不能提供一个直接的反应机理,但是任何反应机理的提出必须符合反应动力学的数据.本文采用离子交换法分别制备了一系列不同Na含量USY,不同稀土含量USY,以及含钠和稀土的USY分子筛,通过固相动力学模型考察了上述Y型分子筛水热结构破坏活化能的变化及钒对其活化能的影响.结果表明,Y型分子筛的结构破坏存在三种路径,分别是脱铝、脱硅和La-O键的断裂.钒加速了分子筛骨架水解速率;钒钠具有协同作用,同时存在时对分子筛破坏作用更加显著;NaOH的形成是速率控制步骤;稀土稳定了分子筛的结构,降低了分子筛的水热脱铝速率;钒与定位于分子筛小笼里稀土作用,破坏分子筛的[RE-OH-RE]~(5+)的RE-O键夺取分子筛的骨架氧,导致骨架结构崩塌.由于稀土本身稳定了分子筛的结构,同时钒稀土作用时形成稳定的REVO_4固定了钒的流动性,因此钒对REY结构的影响是几种因素相互叠加和抵消的结果.  相似文献   

10.
By using 13C MAS NMR spectroscopy (MAS=magic angle spinning), the conversion of selectively 13C‐labeled n‐butane on zeolite H‐ZSM‐5 at 430–470 K has been demonstrated to proceed through two pathways: 1) scrambling of the selective 13C‐label in the n‐butane molecule, and 2) oligomerization–cracking and conjunct polymerization. The latter processes (2) produce isobutane and propane simultaneously with alkyl‐substituted cyclopentenyl cations and condensed aromatic compounds. In situ 13C MAS NMR and complementary ex situ GC–MS data provided evidence for a monomolecular mechanism of the 13C‐label scrambling, whereas both isobutane and propane are formed through intermolecular pathways. According to 13C MAS NMR kinetic measurements, both pathways proceed with nearly the same activation energies (Ea=75 kJ mol?1 for the scrambling and 71 kJ mol?1 for isobutane and propane formation). This can be rationalized by considering the intermolecular hydride transfer between a primarily initiated carbenium ion and n‐butane as being the rate‐determining stage of the n‐butane conversion on zeolite H‐ZSM‐5.  相似文献   

11.
The gas‐phase oxidation of CO catalyzed by iridium was studied under CO‐rich reactant conditions over the pressure range 10?4–10?2 Pa to investigate the controversial size and pressure dependencies. The reactivity of iridium clusters with an average size of 3 nm was compared to macroscopic metal particles with extended single crystal facets over a range of temperatures (433–573 K), and the apparent activation energies for CO oxidation were consistent with the known activation energies for CO desorption from iridium surfaces. No size‐specific dependence of the reaction kinetics was measured, and no indication of the previously reported “pressure gap” was observed. Unlike many other transition metal catalysts, iridium may be used as a model catalyst for CO oxidation in different morphological forms over a range of pressures without invoking a change in the kinetic model. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 826–830, 2008  相似文献   

12.
The application of protective overoxidized poly‐1‐naphtylamine membrane (ONAP) is demonstrated in combination with bismuth film microelectrode (ONAP‐BiFME) for anodic stripping voltammetric measurement of trace heavy metals in the presence of some selected surfactants. The ONAP membrane was electrochemically deposited on the surface of bare single carbon fiber microelectrode followed by the in situ or ex situ preparation of the bismuth film. The key operational parameters influencing the stripping performance of the ONAP‐BiFME were optimized and its electroanalytical performance was examined in the model solution containing Cd(II) and Pb(II) as test metal ions. The ONAP‐BiFME exhibited significantly enhanced stripping voltammetric response (approximately 70% for Cd(II) and 45% for Pb(II)) in comparison with unmodified BiFME in the absence of surfactants. In the presence of high concentrations, e.g., 20 mg L?1, of anionic or cationic surfactants, the stripping signal for, e.g., Cd(II) decreased for less than 6% at the ONAP‐BiFME, whereas at the unmodified BiFME the signal attenuated considerably (approximately 38%). Moreover, in the presence of 10 mg L?1 of nonionic surfactant Triton X‐100, the stripping signals at the bare BiFME were almost completely suppressed, whereas at the ONAP‐BiFME exhibited linear concentration behavior in the examined concentration range from 10 to 120 μg L?1, with the calculated limit of detection of 5.0 μg L?1 and 3.4 μg L?1 for Cd(II) and Pb(II), respectively in connection with 60 s accumulation time. The attractive behavior of ONAP‐modified BiFME expands the applicability of bismuth‐based electrodes for measurement of trace heavy metals in real environments, where the presence of more complex matrix can be expected.  相似文献   

13.
The immense structural diversity of more than 200 known zeolites is the basis for the wide variety of applications of these fascinating materials ranging from catalysis and molecular filtration to agricultural uses. Despite this versatility, the potential of zeolites in medical imaging has not yet been much exploited. In this work a novel strategy is presented to selectively deposit different ions into distinct framework locations of zeolite‐LTL (Linde type L) and it is demonstrated that the carefully ion‐exchanged Gd/Eu‐containing nanocrystals acquire exceptional magnetic properties in combination with enhanced luminescence. This smart exploitation of the framework structure yields the highest relaxivity density (13.7 s?1 L g?1 at 60 MHz and 25 °C) reported so far for alumosilicates, rendering these materials promising candidates for the design of dual magnetic resonance/optical imaging probes, as demonstrated in preliminary phantom studies.  相似文献   

14.
The optimization of the physico‐chemical properties of both GdIII chelates and nanocarriers is of great importance for the development of effective nanosystems for magnetic resonance imaging (MRI) applications. With this aim, macrocyclic GdIII chelates were selectively attached to the pendant amino groups exposed to the external surface of spheroidal mesoporous silica nanoparticles (MSNs). This was achieved by treating the metal complexes with MSNs that contained the templating surfactant molecules confined within the silica channels (hexadecyltrimethylammonium (CTA)/MSN), followed by extraction of the surfactant. The nanoparticles showed greatly improved 1H relaxometric efficiency relative to corresponding systems that also feature GdIII chelates conjugated inside the pores. A further significant relaxivity enhancement was observed after chemical transformation of the free amino groups into amides. The ionic relaxivity of the final nanoparticles (r1p=79.1 mM ?1 s?1; 0.5 T, 310 K) is one of the highest reported so far.  相似文献   

15.
We report herein the kinetic studies on hydrolysis of three cyanopyridines in high‐temperature water. 3‐Cyanopyridine, 4‐cyanopyridine and 2‐cyanopyridine underwent consecutive hydrolysis to the corresponding pyridinecarboxamides and picolinic acids. Further decarboxylation to pyridine was observed for 2‐cyanopyridine hydrolysis. Experiments at different initial reactant concentrations revealed that these compounds exhibited the first‐order kinetics. Experiments at different temperatures showed that the first‐order rate constants displayed an Arrhenius behavior with activation energies of 74.3, 40.3, and 83.7 kJ mol?1 for 3‐cyanopyridine, 4‐cyanopyridine, 2‐cyanopyridine, respectively. The activation energies obtained for 3‐pyridinecarboxamide, 4‐pyridinecarboxamide and 2‐pyridinecarboxamide hydrolysis are 80.1, 32.7, and 70.5 kJ mol?1, respectively. The effect of substituent position on activation energies for cyanopyridine and pyridinecarboxamide hydrolysis is ortho ≈ meta > para. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 641–648, 2012  相似文献   

16.
Enantiomerization of octahedral tris(α‐diimine)–transition metal complexes was investigated by enantioselective dynamic MEKC. Varying both the transition metal ion (Fe2+, Fe3+, and Ni2+) and the bidentate diimine ligand (1,10‐phenanthroline and 2,2′‐bipyridyl), the enantiomer separations were performed either in a 100 mM sodium tetraborate buffer (pH 9.3) or in a 100 mM sodium tetraborate/sodium dihydrogenphosphate buffer (pH 8.0) both containing sodium cholate as chiral surfactant. The unified equation of dynamic chromatography was employed to determine apparent reaction rate constants from the electropherograms showing distinct plateau formation. Apparent activation parameters ΔH? and ΔS? were calculated from temperature‐dependent measurements between 10.0 and 35.0°C in 2.5 K steps. It was found that the nature of the central metal ion and the ligand strongly influence the enantiomerization barrier. Surprisingly, complexes containing the 2,2′‐bipyridyl ligand show highly negative activation entropies between ?103 and ?116 J (K mol)?1 while the activation entropy of tris(1,10‐phenanthroline) complexes is positive indicating a different mechanism of interconversion. Furthermore, it was found that the Ni2+ complexes are stereostable under the conditions investigated here making them a lucent target as enantioselective catalysts.  相似文献   

17.
Au/TiO2 catalysts prepared by a deposition–precipitation process and used for CO oxidation without previous calcination exhibited high, largely temperature‐independent conversions at low temperatures, with apparent activation energies of about zero. Thermal treatments, such as He at 623 K, changed the conversion–temperature characteristics to the well‐known S‐shape, with activation energies slightly below 30 kJ mol?1. Sample characterization by XAFS and electron microscopy and a low‐temperature IR study of CO adsorption and oxidation showed that CO can be oxidized by gas‐phase O2 at 90 K already over the freeze‐dried catalyst in the initial state that contained Au exclusively in the +3 oxidation state. CO conversion after activation in the feed at 303 K is due to AuIII‐containing sites at low temperatures, while Au0 dominates conversion at higher temperatures. After thermal treatments, CO conversion in the whole investigated temperature range results from sites containing exclusively Au0.  相似文献   

18.
The present study reports the synthesis and rational design of porous structured materials by using a templating method. A tetraethoxysilylated tripodal tetraamine (TREN) was covalently incorporated in a silica framework with a double imprint: A surfactant template and a metal ion imprint. The presence of a cationic surfactant (CTAB) endowed the material with a high porosity, and the tripodal or square‐pyramidal topology of the ligand was preserved thanks to the use of the silylated CuII complex. After removal of the surfactant and de‐metalation, the incorporated tetraamine was quantitatively complexed by CuCl2 and the material has shown after thermal activation that a reversible binding of O2 on the metal ions occurred. This chemisorption process was monitored by UV/Vis and EPR spectroscopies, and the Cu:O2 adduct was postulated to be an end‐on μ‐η11‐peroxodicopper(II) complex bridged by a chloride ion. The CuI‐active species, formed during the activation step, were fully recovered during several O2 binding cycles. The high reactivity of the copper complexes and the room‐temperature stability of the dioxygen adduct were explained by the fine adaptability of the tripodal ligand to different geometries, the confinement of the active sites in the hybrid silica that protect them from degradation by a control of the metal‐ion microenvironment, as well as the short‐range lamellar order of the copper complexes in the framework.  相似文献   

19.
Based on the combination of colloidal‐crystal templating and a molecular imprinting technique, a sensor platform for efficient detection of atrazine in aqueous solution has been developed. The sensor is characterized by a 3D‐ordered interconnected macroporous structure in which numerous nanocavities derived from atrazine imprinting are distributed in the thin wall of the formed inverse polymer opal. Owing to the special hierarchical porous structure, the molecularly imprinted polymer opals (or molecularly imprinted photonic polymer; MIPP) allow rapid and ultrasensitive detection of the target analyte. The interconnected macropores are favorable for the rapid transport of atrazine in polymer films, whereas the inherent high affinity of nanocavites distributed in thin polymer walls allows MIPP to recognize atrazine with high specificity. More importantly, the atrazine recognition events of the created nanocavities can be directly transferred (label‐free) into a readable optical signal through a change in Bragg diffraction of the ordered macropores array of MIPP and thereby induce color changes that can be detected by the naked eye. With this novel sensory system, direct, ultrasensitive (as low as 10?8 ng mL?1), rapid (less than 30 s) and selective detection of atrazine with a broad concentration range varying from 10?16 M to 10?6 M in aqueous media is achieved without the use of label techniques and expensive instruments.  相似文献   

20.
The mechanism and kinetics of curing reaction of tetrafunctional epoxy resin (Ag-80)/novel diamines curing (SED) system were studied by non-isothermal and isothermal DSC. Different equivalent ratios of amine-epoxide give rise to different curing mechanisms. The main condensation reaction can be attributed to the reactions between the primary amine and epoxide and between the hydroxyl and epoxide when temperature is below 200°C, and to the reaction between the second-ary amine and epoxide when temperature is above 200°C. The corresponding apparent activation energies are 58.3 kJ·mol?1 and 99.3 kJ·mol?1 respectively. Apparent activation energies of condensation reactions between primary amine and epoxide and between hydroxyl and epoxide are just the same, which are 47.3 kJ·mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号