首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of the first enantio‐, diastereo‐, and regioselective iridium‐catalyzed allylic alkylation reaction of prochiral enolates to form an all‐carbon quaternary stereogenic center with an aliphatic‐substituted allylic electrophile is disclosed. The reaction proceeds with good to excellent selectivity with a range of substituted tetralone‐derived nucleophiles furnishing products bearing a newly formed vicinal tertiary and all‐carbon quaternary stereodyad. The utility of this protocol is further demonstrated via a number of synthetically diverse product transformations.  相似文献   

2.
3.
Iridium‐catalyzed enantioselective allylic alkylation of branched racemic carbonates with functionalized alkylzinc bromide reagents is described. Enabled by a chiral Ir/(P,olefin) complex, the method described allows allylic substitution with various primary and secondary alkyl nucleophiles with excellent regio‐ and enantioselectivities. The developed reaction was showcased in a concise, asymmetric synthesis of (?)‐preclamol.  相似文献   

4.
Quaternary stereocenters are of great importance to the three-dimensionality and enhanced properties of new molecules, but the synthetic challenges in creating quaternary stereocenters greatly hinder their wide use in drug discovery, organic material design, and natural product synthesis. The asymmetric allylic alkylation (AAA) of allylic substrates has proven to be a powerful methodology for enantioselective formation of structure skeletons bearing single or more quaternary carbon centers in modern asymmetric organocatalysis. AAA has certain advantages in constructing the tetrasubstituted stereocenters, including but not limited to mild reactive conditions, effective reaction rates, new functional group introduction, and carbon chains length extension. This review outlines the key considerations in the application of AAA reactions and summarizes the recent progress of AAA reactions in the enantioselective synthesis of products containing quaternary stereocenters. Meanwhile, a detailed discussion of the AAA reactions such as ligands, scope of substrates, transformations and the general reaction mechanisms is also provided. We hope this review could stimulate further advances in much broader areas, including organic synthesis, asymmetric catalysis, C−H activation, and symmetrical pharmaceutical chemistry.  相似文献   

5.
Few allylic electrophiles containing two different substituents at a single allyl terminus and none in which one of the two substituents is a heteroatom, have been shown previously to react with iridium catalysts to form substitution products. We report that iridium‐catalysts are uniquely suited to form tertiary allylic fluorides enantioselectively by the addition of a diverse range of carbon‐centered nucleophiles at the fluorine‐containing terminus of 3‐fluoro‐substituted allylic esters. The products contain tertiary stereogenic centers bearing a single fluorine, which are isosteric with common tertiary stereocenters containing a single hydrogen. Computational studies reveal the principal steric interactions influencing the stability of endo and exo π‐allyl intermediates formed from 3,3‐disubstituted allylic electrophiles.  相似文献   

6.
Reported herein is the iridium‐catalyzed regio‐ and enantioselective allylic substitution reactions of unstabilized silyl dienolates derived from dioxinones. Asymmetric allylic substitution of a variety of allylic trichloroethyl carbonates with these silyl dienolates gave γ‐allylated products selectively in 60–84 % yield and 90–98 % ee.  相似文献   

7.
Copper‐catalyzed enantioselective allylic alkylation of azoles with γ,γ‐disubstituted primary allylic phosphates was achieved using a new chiral N‐heterocyclic carbene ligand bearing a naphtholic hydroxy group. This reaction occurred with excellent branch regioselectivity and high enantioselectivity, thus forming a controlled all‐carbon quaternary stereogenic center at the position α to the heteroaromatic ring.  相似文献   

8.
9.
A copper/phosphoramidite catalyzed asymmetric allylic alkylation of Z trisubstituted allyl bromides with organolithium reagents is reported. The reaction affords all‐carbon quaternary stereogenic centers in high yields and very good regio‐ and enantioselectivity. This systematic study illustrates the crucial role of the olefin geometry of the allyl substrate on the outcome of the reaction and provides a viable alternative to access these important structural motifs.  相似文献   

10.
The first Ir‐catalyzed enantioselective allylation of trisubstituted allylic electrophiles has been developed. Through modification of the leaving group of allylic electrophiles, we found that trisubstituted allylic phosphates are suitable electrophiles for asymmetric allylation. The reaction of allylic phosphates with enol silanes derived from dioxinones gave allylated products in good yields with high enantioselectivities.  相似文献   

11.
12.
The enantioselective intermolecular C2‐allylation of 3‐substituted indoles is reported for the first time. This directing group‐free approach relies on a chiral Ir‐(P, olefin) complex and Mg(ClO4)2 Lewis acid catalyst system to promote allylic substitution, providing the C2‐allylated products in typically high yields (40–99 %) and enantioselectivities (83–99 % ee) with excellent regiocontrol. Experimental studies and DFT calculations suggest that the reaction proceeds via direct C2‐allylation, rather than C3‐allylation followed by in situ migration. Steric congestion at the indole‐C3 position and improved π–π stacking interactions have been identified as major contributors to the C2‐selectivity.  相似文献   

13.
14.
Palladium‐catalyzed asymmetric allylic alkylation of nonstabilized ketone enolates to generate quaternary centers has been achieved in excellent yield and enantioselectivity. Optimized conditions consist of performing the reaction in the presence of two equivalents of LDA as base, one equivalent of trimethytin chloride as a Lewis acid, 1,2‐dimethoxyethane as the solvent, and a catalytic amount of a chiral palladium complex formed from π‐allyl palladium chloride dimer 3 and cyclohexyldiamine derived chiral ligand 4 . Linearly substituted, acyclic 1,3‐dialkyl substituted, and unsubstituted allylic carbonates function well as electrophiles. A variety of α‐tetralones, cyclohexanones, and cyclopentanones can be employed as nucleophiles. The absolute configuration generated is consistent with the current model in which steric factors control stereofacial differentiation. The quaternary substituted products available by this method are versatile substrates for further elaboration.  相似文献   

15.
The stereodivergent iridium‐catalyzed allylic alkylation and fluorination of acyclic ketones is described. α‐Pyridyl‐α‐fluoroketones with vicinal tertiary and quaternary stereocenters were obtained in moderate to excellent yields and stereoselectivities. Distinct from known stereodivergent synthesis, for which two different chiral catalysts are required in general, herein we report a sequence‐dependent stereodivergent synthesis. With only a single chiral Ir catalyst, all four possible stereoisomers of the products were prepared from the same starting materials by simply adjusting the sequence of asymmetric allylic alkylation and fluorination and varying the absolute configuration of the Ir catalyst.  相似文献   

16.
Regio‐ and enantioselective synthesis of N‐allylindoles was realized through an iridium‐catalyzed asymmetric allylic amination reaction with 2‐alkynylanilines and subsequent transition‐metal‐catalyzed cyclization reactions. The highly enantioenriched allylic amines prepared from Ir‐catalysis were treated with catalytic amount of NaAuCl4 ? 2 H2O or PdCl2 providing various substituted N‐allylindoles in excellent yields and enantioselectivities.  相似文献   

17.
The redox‐neutral dicarbofunctionalization of tri‐ and tetrasubstituted olefins to form a variety of (hetero)cyclic compounds under photoinduced palladium catalysis is described. This cascade reaction process was used to couple styrenes or acryl amides with a broad range of highly decorated olefins tethered to aryl or alkyl bromides (>50 examples). This procedure enables one or two contiguous all‐carbon quaternary centers to be formed in a single step. The products could be readily diversified and applied in the synthesis of a bioactive oxindole analogue.  相似文献   

18.
The first iridium‐catalyzed intermolecular asymmetric allylic amination reaction with 2‐hydroxypyridines has been developed, thus providing a highly efficient synthesis of enantioenriched N‐substituted 2‐pyridone derivatives from readily available starting materials. This protocol features a good tolerance of functional groups in both the allylic carbonates and 2‐hydroxypyridines, thereby delivering multifunctionalized heterocyclic products with up to 98 % yield and 99 % ee.  相似文献   

19.
A combination of an in situ generated chiral CuI/DTBM‐MeO‐BIPHEP catalyst system and EtOK enabled the enantioselective SN2′‐type allylic cross‐coupling between alkylborane reagents and γ,γ‐disubstituted primary allyl chlorides with enantiocontrol at a useful level. The reaction generates a stereogenic quaternary carbon center having three sp3‐alkyl groups and a vinyl group. This protocol allowed the use of terminal alkenes as nucleophile precursors, thus representing a formal reductive allylic cross‐coupling of terminal alkenes. A reaction pathway involving addition/elimination of a neutral alkylcopper(I) species with the allyl chloride substrate is proposed.  相似文献   

20.
The diastereoselective asymmetric synthesis of vicinal all‐carbon‐atom quaternary stereocenters is a challenging problem in organic synthesis for which only few solutions have been described. A catalytic asymmetric Nazarov cyclization of fully substituted dienones that provides cyclopentenone derivatives with vicinal quaternary stereocenters in high optical purity and as single diastereoisomers is now reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号