首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au? M (M=Au, Pd, and Pt) core–shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au? Au, Au? Pd, and Au? Pt core–shell nanostructures with typical porous shells. Moreover, the Au? Au isomeric core–shell nanostructure is reported for the first time. The lower oxidation states of AuI, PdII, and PtII are supposed to contribute to the formation of porous core–shell nanostructures instead of yolk‐shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au? Pd core–shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core–shell nanostructures. As expected, the Au? Pd core–shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (If/Ib is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au? M (M=Au, Pd, and Pt) core–shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface‐enhanced Raman scattering, and so forth.  相似文献   

2.
《结构化学》2020,39(8):1372-1376
Since the discovery of surface-enhanced Raman spectroscopy(SERS), it has been rapidly applied to the in situ study of electrochemical interfaces. Shell-isolated nanoparticle-enhanced Raman spectroscopy(SHINERS) stands out as one of the most powerful tools for the in situ study of interfacial structures, especially on well-defined single crystal surface. This perspective paper focuses on the study of interfacial structures with the SHINERS technique, including the electronic structure of heterogeneous metal surfaces, and the detection of molecules absorbed on the surface, as well as intermediate species, during electrochemical reactions. Finally, we present an outlook on future research and development of SHINERS for studying interfacial structures.  相似文献   

3.
We report a systematic investigation on the structural and electronic effects of carbon‐supported PtxPd1?x bimetallic nanoparticles on the oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in acid electrolyte. PtxPd1?x/C nanocatalysts with various Pt/Pd atomic ratios (x=0.25, 0.5, and 0.75) were synthesized by using a borohydride‐reduction method. Rotating‐disk electrode measurements revealed that the Pt3Pd1/C nanocatalyst has a synergistic effect on the ORR, showing 50 % enhancement, and an antagonistic effect on the MOR, showing 90 % reduction, relative to JM 20 Pt/C on a mass basis. The extent of alloying and Pt d‐band vacancies of the PtxPd1?x/C nanocatalysts were explored by extended X‐ray absorption fine‐structure spectroscopy (EXAFS) and X‐ray absorption near‐edge structure spectroscopy (XANES). The structure–activity relationship indicates that ORR activity and methanol tolerance of the nanocatalysts strongly depend on their extent of alloying and d‐band vacancies. The optimal composition for enhanced ORR activity is Pt3Pd1/C, with high extent of alloying and low Pt d‐band vacancies, owing to favorable O? O scission and inhibited formation of oxygenated intermediates. MOR activity also shows structure dependence. For example, Pt1Pd3/C with Ptrich?corePdrich?shell structure possesses lower MOR activity than the Pt3Pd1/C nanocatalyst with random alloy structure. Herein, extent of alloying and d‐band vacancies reveal new insights into the synergistic and antagonistic effects of the PtxPd1?x/C nanocatalysts on surface reactivity.  相似文献   

4.
The electronic structure and the spectroscopic properties of [Pt(NH3)4][Au(CN)2]2, [Pt(NH3)4][Ag(CN)2]2, [Pt(CNCH3)4][Pt(CN)4], and [Pt(CNCH3)4][Pd(CN)4] were studied at the HF, MP2, B3LYP, and PBE levels. In all the complexes, it was found that the nature of the intermetal interactions is consistent with the presence of a high‐ionic contribution (90%) and a dispersion‐type interaction (10%). The absorption spectra of these complexes were calculated by the single‐excitation time‐dependent (TD) method at the HF, B3LYP, and PBE levels. The [Pt(NH3)4][M(CN)2]2 (M ? Au, Ag) complexes showed a 1(dσ* → pσ) transition associated with a metal–metal charge transfer. On the other hand, the [Pt(CNCH3)4][M(CN)4] (M ? Pt, Pd) complexes showed a 1(dσ* → π*) transition associated with a metal‐to‐metal and ligand charge transfer. The values obtained theoretically are in agreement with the experimental range. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

5.
Pt/Co‐core Au‐shell nanoparticles were synthesized via a two‐step route using NaBH4 as a reducing agent. The nanoparticles are characterized by UV‐vis spectroscopy, transmission electron microscopy (TEM) and powder X‐ray diffraction (XRD). The results indicate that the as‐synthesized Pt/Co‐core Au‐shell nanoparticles have a disordered face centered cubic (fcc) structure, whereas the annealed Pt/Co‐core Au‐shell nanoparticles exhibit an ordered face centered tetragonal (fct) structure. Superconducting quantum interference device (SQUID) studies reveal that the coercivity of the annealed Pt/Co‐core Au‐shell nanoparticles increases to 510 Oe after heat treatment at 500 °C for 2 h.  相似文献   

6.
The spillover of hydrogen species and its role in tuning the activity and selectivity in catalytic hydrogenation have been investigated in situ using surface‐enhanced Raman spectroscopy (SERS) with 10 nm spatial resolution through the precise fabrication of Au/TiO2/Pt sandwich nanostructures. In situ SERS study reveals that hydrogen species can efficiently spillover at Pt‐TiO2‐Au interfaces, and the ultimate spillover distance on TiO2 is about 50 nm. Combining kinetic isotope experiments and density functional theory calculations, it is found that the hydrogen spillover proceeds via the water‐assisted cleavage and formation of surface hydrogen–oxygen bond. More importantly, the selectivity in the hydrogenation of the nitro or isocyanide group is manipulated by controlling the hydrogen spillover. This work provides molecular insights to deepen the understanding of hydrogen activation and boosts the design of active and selective catalysts for hydrogenation.  相似文献   

7.
Control over composition and morphology of nanocrystals (NCs) is significant to develop advanced catalysts applicable to polymer electrolyte membrane fuel cells and further overcome the performance limitations. Here, we present a facile synthesis of Pd?Pt alloy ultrathin assembled nanosheets (UANs) by regulating the growth behavior of Pd?Pt nanostructures. Iodide ions supplied from KI play as capping agents for the {111} plane to promote 2‐dimensional (2D) growth of Pd and Pt, and the optimal concentrations of cetyltrimethylammonium chloride and ascorbic acid result in the generation of Pd?Pt alloy UANs in high yield. The prepared Pd?Pt alloy UANs exhibited the remarkable enhancement of the catalytic activity and stability toward ethanol oxidation reaction compared to irregular‐shaped Pd?Pt alloy NCs, commercial Pd/C, and commercial Pt/C. Our results confirm that the Pd?Pt alloy composition and ultrathin 2D morphology offer high accessible active sites and favorable electronic structure for enhancing electrocatalytic activity.  相似文献   

8.
Efficient electro‐oxidation of formic acid, methanol, and ethanol is challenging owing to the multiple chemical reaction steps required to accomplish full oxidation to CO2. Herein, a ternary CoPtAu nanoparticle catalyst system is reported in which Co and Pt form an intermetallic L10‐structure and Au segregates on the surface to alloy with Pt. The L10‐structure stabilizes Co and significantly enhances the catalysis of the PtAu surface towards electro‐oxidation of ethanol, methanol, and formic acid, with mass activities of 1.55 A/mgPt, 1.49 A/mgPt, and 11.97 A/mgPt, respectively in 0.1 m HClO4. The L10‐CoPtAu catalyst is also stable, with negligible degradation in mass activities and no obvious Co/Pt/Au composition changes after 10 000 potential cycles. The in situ surface‐enhanced infrared absorption spectroscopy study indicates that the ternary catalyst activates the C?C bond more efficiently for ethanol oxidation.  相似文献   

9.
The palladium and gold precursors were dissolved in dispersive and continuous phase of ionic liquid microemulsion (H2O/Triton X-100 (TX-100)/1-butyl-3-methylimidazolium hexafluorophosphate), respectively. [PdCl6]2? ions were reduced in situ by TX-100 in dispersive phase (H2O) to prepare Pd nanoparticles (NPs) and then [AuCl4]? crossed through the interface film and reacted with the as-prepared Pd NPs to form Pd4Au NPs. The as-prepared Pd4Au NPs were characterized by transmission electronic microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and ultraviolet–visible spectroscopy. The as-prepared Pd4Au NPs suspension and carbon nanotubes (CNTs) suspension were vigorously stirred to prepare the electrocatalyst supported on the CNTs with a total metal loading of 20?wt.% (denoted by Pd4Au/CNTs). Cyclic voltammetry and chronoamperometry tests show that the Pd4Au/CNTs are very promising for the oxidation of ethanol in alkaline medium. The result can be attributed to the synergistic effect between Pd and Au during the catalytic process.  相似文献   

10.
The present work reports the facile synthesis and characterization of carbon‐supported porous Pd shell coated Au nanochain networks (AuPdNNs/C). By using Co nanoframes as sacrificial templates, AuPdNNs/C series have been prepared by a two‐step galvanic replacement reaction (GRR) technique. In the first step, the Au metal precursor, HAuCl4, reacts spontaneously with the formed Co nanoframes through the GRR, resulting in Au nanochain networks (AuNNs). The second GRR is performed with various concentrations of Pd precursor (0.1, 1, and 10 mM PdCl2), resulting in AuPdNNs/C. The synthesized AuPdNNs/C series are investigated as electrocatalysts for oxygen reduction reaction (ORR) in alkaline solution. The physical properties of the AuPdNNs/C catalysts are characterized by scanning electron microscopy (SEM), high‐resolution transmission electron microscopy (HRTEM), UV‐vis absorption spectroscopy, and cyclic voltammetry (CV). Rotating disk electrode (RDE) voltammetric studies show that the Au0.8Pd0.2NNs/C (prepared using 1 mM PdCl2) has the highest ORR activity among all the AuPdNNs/C series, which is comparable to commercial Pt catalyst (E‐TEK). The ORR activity of AuPdNNs/C is presumably due to the enhanced Pd surface area and high porosity of Pd nanoshells.  相似文献   

11.
The reaction of [Au(C?C?n‐Bu)]n with [Pd(η3‐allyl)Cl(PPh3)] results in a ligand and alkynyl rearrangement, and leads to the heterometallic complex [Pd(η3‐allyl){Au(C?C?n‐Bu)2}]2 ( 3 ) with an unprecedented bridging bisalkynyl–gold ligand coordinated to palladium. This is a formal gold‐to‐gold transmetalation that occurs through reversible alkynyl transmetalations between gold and palladium.  相似文献   

12.
Herein we report a facile and efficient method for self‐assembling noble‐metal nanoparticles (NPs) to the surface of SnO2‐coated carbon nanotubes (CNT@SnO2) to construct CNT@SnO2/noble metal NP hybrids. By using SnCl4 as the precursor of the SnO2 shell on the surface of CNTs, the hydrolysis speed of SnCl4 was slowed down in ethanol containing a trace amount of urea and water. The coaxial nanostructure of CNT@SnO2 was confirmed by using X‐ray powder diffraction (XRD) and transmission electron microscopy (TEM). It was found that the coating layer of SnO2 was homogeneous with the mean thickness of 8 nm. The CNT@SnO2/noble‐metal NP hybrids were obtained by mixing noble‐metal NPs with as‐prepared CNT@SnO2 coaxial nanocables by means of a self‐assembly strategy. With the amino group terminated, the CNT@SnO2 coaxial nanocable can readily adsorb the as‐prepared noble‐metal NPs (Au, Ag, Au? Pt, and Au? Pd NPs). The presence of an amino group at the surface of SnO2 was proved by use of X‐ray photoelectron spectroscopy (XPS). In addition, H2O2 sensing by amperometric methods could serve as detection models for investigating the electrocatalytic ability of as‐prepared hybrid materials. It was found that wide linear ranges and low detection limits were obtained by using the enzyme‐free CNT@SnO2@Au? Pt modified electrode, which indicated the potential utilizations of the hybrid based on CNT@SnO2 for electrochemical sensing.  相似文献   

13.
Redox reactions of solvated molecular species at gold‐electrode surfaces modified by electrochemically inactive self‐assembled molecular monolayers (SAMs) are found to be activated by introducing Au nanoparticles (NPs) covalently bound to the SAM to form a reactive Au–alkanedithiol–NP–molecule hybrid entity. The NP appears to relay long‐range electron transfer (ET) so that the rate of the redox reaction may be as efficient as directly on a bare Au electrode, even though the ET distance is increased by several nanometers. In this study, we have employed a fast redox reaction of surface‐confined 6‐(ferrocenyl) hexanethiol molecules and NPs of Au, Pt and Pd to address the dependence of the rate of ET through the hybrid on the particular NP metal. Cyclic voltammograms show an increasing difference in the peak‐to‐peak separation for NPs in the order Au<Pt<Pd, especially when the length of the alkanedithiol increases from octanedithiol to decanedithiol. The corresponding apparent rate constants, kapp, for decanedithiol are 1170, 360 and 14 s?1 for NPs of Au, Pt and Pd, respectively, indicating that the efficiency of NP mediation of the ET clearly depends on the nature of the NP. Based on a preliminary analysis rooted in interfacial electrochemical ET theory, combined with a simplified two‐step view of the NP coupling to the electrode and the molecule, this observation is referred to the density of electronic states of the NPs, reflected in a broadening of the molecular electron/NP bridge group levels and energy‐gap differences between the Fermi levels of the different metals.  相似文献   

14.
The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt2+ solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)‐step‐like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the C?C bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.  相似文献   

15.
A high‐efficiency nanoelectrocatalyst based on high‐density Au/Pt hybrid nanoparticles supported on a silica nanosphere (Au‐Pt/SiO2) has been prepared by a facile wet chemical method. Scanning electron microscopy, transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy are employed to characterize the obtained Au‐Pt/SiO2. It was found that each hybrid nanosphere is composed of high‐density small Au/Pt hybrid nanoparticles with rough surfaces. These small Au/Pt hybrid nanoparticles interconnect and form a porous nanostructure, which provides highly accessible activity sites, as required for high electrocatalytic activity. We suggest that the particular morphology of the Au‐Pt/SiO2 may be the reason for the high catalytic activity. Thus, this hybrid nanomaterial may find a potential application in fuel cells.  相似文献   

16.
Catalytic hydrogenation of nitroaromatics is an environment‐benign strategy to produce industrially important aniline intermediates. Herein, we report that Fe(OH)x deposition on Pt nanocrystals to give Fe(OH)x/Pt, enables the selective hydrogenation of nitro groups into amino groups without hydrogenating other functional groups on the aromatic ring. The unique catalytic behavior is identified to be associated with the FeIII‐OH‐Pt interfaces. While H2 activation occurs on exposed Pt atoms to ensure the high activity, the high selectivity towards the production of substituted aniline originates from the FeIII‐OH‐Pt interfaces. In situ IR, X‐ray photoelectron spectroscopy (XPS), and isotope effect studies reveal that the Fe3+/Fe2+ redox couple facilitates the hydrodeoxygenation of the ‐NO2 group during hydrogenation catalysis. Benefitting from FeIII‐OH‐Pt interfaces, the Fe(OH)x/Pt catalysts exhibit high catalytic performance towards a broad range of substituted nitroarenes.  相似文献   

17.
《Electroanalysis》2006,18(1):64-69
Efficient and stable electrocatalytic activity for the reduction of O2 at activated screen‐printed carbon electrodes modified with palladium nanoparticles (SPE*‐Pd) was demonstrated in this study. X‐ray photoelectron spectroscopy confirmed the formation of >C?O functional group on electrode surface during the preanodization procedure at 2.0 V (vs. Ag/AgCl). The existence of chloride moieties was also identified possibly from the organic binder of carbon ink used in SPE fabrication. Both >C?O and chloride functional groups were essential for the excellent stability of the SPE*‐Pd. Electrochemical impedance spectroscopy verified the enhanced kinetic rate of oxygen reduction reaction at the as‐prepared Pd nanoparticles. The SPE*‐Pd showed ca. 250 mV positive shift in peak potential together with twice increase in peak current compared to those observed at a SPE‐Pt. The calibration plot was linear up to 8 ppm of DO with sensitivity and regression coefficient of 4.49 μA/ppm and 0.9936, respectively. The variation coefficient of ipc for 7 DO determinations with O2‐saturated pH 7.4 PBS was 2.1%. Real sample assays for ground and tap waters gave consistent values to those measured by a commercial dissolved oxygen meter.  相似文献   

18.
It is very interesting and also a big challenge to encapsulate metal clusters within microporous solids to expand their application diversity. For this target, herein, we present an electrochemical synthesis strategy for the encapsulation of noble metals (Au, Pd, Pt) within ZIF‐8 cavities. In this method, metal precursors of AuCl42?, PtCl62?, and PdCl42? are introduced into ZIF‐8 crystals during the concurrent crystallization of ZIF‐8 at the anode. As a consequence, very small metal clusters with sizes around 1.2 nm are obtained within ZIF‐8 crystals after hydrogen reduction; these clusters exhibit high thermal stability, as evident from the good maintenance of their original sizes after a high‐temperature test. The catalytic properties of the encapsulated metal clusters within ZIF‐8 are evaluated for CO oxidations. Because of the small pore window of ZIF‐8 (0.34 nm) and the confinement effect of small pores, about 80 % of the metal clusters (fractions of 0.74, 0.77, and 0.75 for Au, Pt, and Pd in ZIF‐8, respectively) retain their catalytic activity after exposure to the organosulfur poison thiophene (0.46 nm), which is in contrast to their counterparts (fractions of 0.22, 0.25, and 0.20 for Au, Pt, and Pd on the SiO2 support). The excellent performances of metal clusters encapsulated within ZIF‐8 crystals give new opportunities for catalytic reactions.  相似文献   

19.
Herein, we report the employment of the Mo? Mo quintuple bonded amidinate complex to stabilize Group 10 metal fragments {(Et3P)2M} (M=Pd, Pt) and give rise to the isolation of the unprecedented δ complexes. X‐ray analysis unambiguously revealed short contacts between Pd or Pt and two Mo atoms and a slight elongation of the Mo? Mo quintuple bond in these two compounds. Computational studies show donation of the Mo? Mo quintuple‐bond δ electrons to an empty σ orbital on Pd or Pt, and back‐donation from a filled Pd or Pt dπ orbital into the Mo? Mo δ* level (LUMO), consistent with the Dewar–Chatt–Duncanson model.  相似文献   

20.
M‐doped NH2‐MIL‐125(Ti) (M=Pt and Au) were prepared by using the wetness impregnation method followed by a treatment with H2 flow. The resultant samples were characterized by powder X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), X‐ray absorption fine structure (XAFS) analyses, N2‐sorption BET surface area, and UV/Vis diffuse reflectance spectroscopy (DRS). The photocatalytic reaction carried out in saturated CO2 with triethanolamine (TEOA) as sacrificial agent under visible‐light irradiations showed that the noble metal‐doping on NH2‐MIL‐125(Ti) promoted the photocatalytic hydrogen evolution. Unlike that over pure NH2‐MIL‐125(Ti), in which only formate was produced, both hydrogen and formate were formed over Pt‐ and Au‐loaded NH2‐MIL‐125(Ti). However, Pt and Au have different effects on the photocatalytic performance for formate production. Compared with pure NH2‐MIL‐125(Ti), Pt/NH2‐MIL‐125(Ti) showed an enhanced activity for photocatalytic formate formation, whereas Au has a negative effect on this reaction. To elucidate the origin of the different photocatalytic performance, electron spin resonance (ESR) analyses and density functional theory (DFT) calculations were carried out over M/NH2‐MIL‐125(Ti).The photocatalytic mechanisms over M/NH2‐MIL‐125(Ti) (M=Pt and Au) were proposed. For the first time, the hydrogen spillover from the noble metal Pt to the framework of NH2‐MIL‐125(Ti) and its promoting effect on the photocatalytic CO2 reduction is revealed. The elucidation of the mechanism on the photocatalysis over M/NH2‐MIL‐125(Ti) can provide some guidance in the development of new photocatalysts based on MOF materials. This study also demonstrates the potential of using noble metal‐doped MOFs in photocatalytic reactions involving hydrogen as a reactant, like hydrogenation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号