首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
An environmentally friendly electrocatalytic protocol has been developed for dehydrogenative C−H/S−H cross‐coupling. This method enabled C−S bond formation under catalyst‐ and oxidant‐free conditions. Under undivided electrolysis conditions, various aryl/heteroaryl thiols and electron‐rich arenes afforded the C−S bond‐formation products in 24–99 % yield. A preliminary mechanistic study indicated that the generation of aryl radical cation intermediates is key to the success of this transformation.  相似文献   

2.
Copper‐catalyzed thiophenol C?H activation is described. Through an initial attempt to conduct C‐arylation with arylboronic acid, a rather surprising sequential C?H activation and S‐arylation was discovered. Mechanistic investigation revealed the disulfide intermediate as the key component in directing C?H oxidation. The overall reaction proceeded under mild conditions with molecular oxygen as the oxidant. Discovery of disulfide as the directing group provides a potential new direction for catalytic C?H functionalization under mild conditions.  相似文献   

3.
The first example of cobalt‐catalyzed oxidative C?H/C?H cross‐coupling between two heteroarenes is reported, which exhibits a broad substrate scope and a high tolerance level for sensitive functional groups. When the amount of Co(OAc)2?4 H2O is reduced from 6.0 to 0.5 mol %, an excellent yield is still obtained at an elevated temperature with a prolonged reaction time. The method can be extended to the reaction between an arene and a heteroarene. It is worth noting that the Ag2CO3 oxidant is renewable. Preliminary mechanistic studies by radical trapping experiments, hydrogen/deuterium exchange experiments, kinetic isotope effect, electron paramagnetic resonance (EPR), and high resolution mass spectrometry (HRMS) suggest that a single electron transfer (SET) pathway is operative, which is distinctly different from the dual C?H bond activation pathway that the well‐described oxidative C?H/C?H cross‐coupling reactions between two heteroarenes typically undergo.  相似文献   

4.
Under an atmosphere of dioxygen, copper‐catalyzed de‐alkylation/amination sequences provide sulfonimidamides from unprotected sulfoximines in moderate to good yields. Mechanistic studies suggest the involvement of radicals in both the C?S bond cleavage and the formation of the new N?S bond.  相似文献   

5.
An iridium‐catalyzed regioselective sequential silylation and borylation of heteroarenes was developed, which represents a rare example of unsymmetrical intermolecular C?H bond difunctionalization through the introduction of two different functionalities during a one‐pot transformation. Although the substrate scope for the dehydrogenative silylation of heteroarenes has been limited mainly to electron‐rich five‐membered rings, the current reaction proceeds with both electron‐rich and electron‐deficient heteroarenes with the aid of heteroatom‐directing C?H bond activation. The regioselectivity of the second borylation was controlled by both steric factors and the electronic effect of the silyl group installed in the first step. In combination with the classic cross‐coupling reaction, this method provides rapid access to multisubstituted heteroarenes.  相似文献   

6.
Palladium‐catalyzed alkene‐directed cross‐coupling of aryl iodide with another aryl halide through C?H arylation opens a unique avenue for unsymmetrical biaryl‐derived molecules. However, homo‐coupling of aryl iodides often erodes the overall synthetic efficiency. Reported herein is a highly chemoselective Pd0‐catalyzed alkyne‐directed cross‐coupling of aryl iodides with bromophenols, which was subsequently followed by phenol dearomatization to furnish a very attractive [2+2+1] spiroannulation. Notably, possible homo‐coupling of aryl iodides was not observed at all. Mechanistic studies indicated that a five‐membered aryl/vinyl palladacycle most likely accounts for promoting the key step of biaryl cross‐coupling.  相似文献   

7.
Achieving site selectivity in carbon–hydrogen (C?H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C?H bonds at the C5 position of 8‐aminoquinoline through copper‐catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single‐electron‐transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C?S cross‐coupling. Importantly, our copper‐catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C?O, C?Br, C?N, C?C, and C?I. These findings provide a fundamental insight into the activation of remote C?H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups.  相似文献   

8.
An oxidative β‐Csp3?H functionalization of tert‐butanol (tBuOH) for the construction of C?S bonds through an iodine‐catalyzed Csp3?H/S?H coupling was successfully achieved. Different kinds of mercaptans were shown to be good coupling partners, affording the desired products in good yields. This protocol not only offers a novel method for the synthesis of β‐hydroxy thioethers, but also provides an effective strategy for selective radical/radical cross‐coupling.  相似文献   

9.
An efficient cobalt(III)‐catalyzed intramolecular cross‐dehydrogenative C?H/N?H coupling of ortho‐alkenylanilines has been developed utilizing O2 as a terminal oxidant. The developed reaction tolerates various reactive functional groups and allows the synthesis of diverse indole derivatives in good to excellent yields. The method was successfully extended to the synthesis of benzofurans through the intramolecular cross‐dehydrogenative C?H/O?H coupling of ortho‐alkenylphenols.  相似文献   

10.
Reported herein is the synthesis of benzofused six‐membered S‐heterocycles by intramolecular dehydrogenative C?S coupling using a modular flow electrolysis cell. The continuous‐flow electrosynthesis not only ensures efficient product formation, but also obviates the need for transition‐metal catalysts, oxidizing reagents, and supporting electrolytes. Reaction scale‐up is conveniently achieved through extended electrolysis without changing the reaction conditions and equipment.  相似文献   

11.
Asymmetric C?H bond functionalization reaction is one of the most efficient and straightforward methods for the synthesis of optically active molecules. Herein we disclose an asymmetric C?H/C?H cross‐coupling reaction of ferrocenes with azoles such as oxazoles and thiazoles. Palladium(II)/monoprotected amino acid (MPAA) catalytic system which exhibits excellent reactivity and regioselectivity for oxazoles and thiazoles. This method offers a powerful strategy for constructing planar chiral ferrocenes. Mechanistic studies suggest that the C?H bond cleavage of azoles is likely proceeding through a SEAr process and may not be a turnover limiting step.  相似文献   

12.
A three‐step transformation consisting of 1) addition of electrochemically generated iodosulfonium ions to vinylarenes to give (1‐aryl‐2‐iodoethoxy)sulfonium ions, 2) nucleophilic substitution by subsequently added aromatic compounds to give 1,1‐diaryl‐2‐iodoethane, and 3) elimination of HI with a base to give 1,1‐diarylethenes was developed. The transformation serves as a powerful metal‐ and chemical‐oxidant‐free method for alkenyl C?H/aromatic C?H cross‐coupling.  相似文献   

13.
A dual C?H/N?H dehydrogenative coupling of quinoline‐type N‐oxides with sulfoximines that leads to N‐(hetero)arylsulfoximines in high yields has been realized by using a catalytic amount of CuBr in air. The method does not require any additional ligand, base, reactivity modifier or oxidant and provides a practical route towards a series of sulfoximidoyl‐functionalized quinolines and derivatives.  相似文献   

14.
Activation of C?H bonds and their application in cross coupling chemistry has received a wider interest in recent years. The conventional strategy in cross coupling reaction involves the pre‐functionalization step of coupling reactants such as organic halides, pseudo‐halides and organometallic reagents. The C?H activation facilitates a simple and straight forward approach devoid of pre‐functionalization step. This approach also addresses the environmental and economical issues involved in several chemical reactions. In this account, we have reported C?H bond activation of small organic molecules, for example, formamide C?H bond can be activated and coupled with β‐dicarbonyl or 2‐carbonyl substituted phenols under oxidative conditions to yield carbamates using inexpensive copper catalysts. Phenyl carbamates were successfully synthesized in moderate to good yields by cross dehydrogenative coupling (CDC) of phenols with formamides using copper catalysts in presence of a ligand. We have also prepared unsymmetrical urea derivatives by oxidative cross coupling of formamides with amines using copper catalysts. Synthesis of N,N‐dimethyl substituted amides, 5‐substituted‐γ‐lactams and α‐acyloxy ethers was carried out from carboxylic acids using recyclable CuO nanoparticles. Copper nanoparticles afforded N‐aryl‐γ‐amino‐γ‐lactams by oxidative coupling of aromatic amines with 2‐pyrrolidinone. Reusable transition metal HT‐derived oxide catalyst was used for the synthesis of N,N‐dimethyl substituted amides by the oxidative cross‐coupling of carboxylic acids and substituted benzaldehydes. Overview of our work in this area is summarized.  相似文献   

15.
C?H iodination of aromatic compounds has been accomplished with the aid of sulfinyl directing groups under palladium catalysis. The reaction proceeds selectively at the peri‐position of polycyclic aryl sulfoxides or at the ortho‐position of phenyl sulfoxides. The iodination products can be further converted via iterative catalytic cross‐coupling at the expense of the C?I and C?S bonds. Computational studies suggest that peri‐C?H palladation would proceed via a non‐directed pathway, wherein neither of the sulfur nor oxygen atom of the sulfinyl group coordinates to the palladium before and at the transition state.  相似文献   

16.
A new and efficient synthesis of 8H‐benzo[e]phenanthro[1,10‐bc]silines from 2‐((2‐(arylethynyl)aryl)silyl)aryl triflates under palladium catalysis has been developed. The reaction mechanism was experimentally investigated and a catalytic cycle involving C?H/C?H coupling through a new mode of 1,4‐palladium migration with concomitant alkene stereoisomerization is proposed.  相似文献   

17.
C?H activation bears great potential for enabling sustainable molecular syntheses in a step‐ and atom‐economical manner, with major advances having been realized with precious 4d and 5d transition metals. In contrast, we employed earth abundant, nontoxic iron catalysts for versatile allene annulations through a unique C?H/N?H/C?O/C?H functionalization sequence. The powerful iron catalysis occurred under external‐oxidant‐free conditions even at room temperature, while detailed mechanistic studies revealed an unprecedented 1,4‐iron migration regime for facile C?H activations.  相似文献   

18.
By making use of a dual‐chelation‐assisted strategy, a completely regiocontrolled oxidative C?H/C?H cross‐coupling reaction between an N‐acylaniline and a benzamide has been accomplished for the first time. This process constitutes a step‐economic and highly efficient pathway to 2‐amino‐2′‐carboxybiaryl scaffolds from readily available substrates. A Cp*‐free RhCl3/TFA catalytic system was developed to replace the [Cp*RhCl2]2/AgSbF6 system generally used in oxidative C?H/C?H cross‐coupling reactions between two (hetero)arenes (Cp*=pentamethylcyclopentadienyl, TFA=trifluoroacetic acid). The RhCl3/TFA system avoids the use of the expensive Cp* ligand and AgSbF6. As an illustrative example, the procedure developed herein greatly streamlines the total synthesis of the naturally occurring benzo[c]phenanthridine alkaloid oxynitidine, which was accomplished in excellent overall yield.  相似文献   

19.
Among halogenated aromatics, iodoarenes are unique in their ability to produce the bench‐stable halogen(III) form. Earlier, such iodine(III) centers were shown to enable C?H functionalization ortho to iodine via halogen‐centered rearrangement. The broader implications of this phenomenon are explored by testing the extent of an unusual iodane‐directed para C?H benzylation, as well as by developing an efficient C?H coupling with sulfonyl‐substituted allylic silanes. Through the combination of the one‐shot nature of the coupling event and the iodine retention, multisubstituted arenes can be prepared by sequentially engaging up to three aromatic C?H sites. This type of iodine‐based iterative synthesis will serve as a tool for the formation of value‐added aromatic cores.  相似文献   

20.
Synthesis of fluoren‐9‐ones by a Rh‐catalyzed intramolecular C?H/C?I carbonylative coupling of 2‐iodobiphenyls using furfural as a carbonyl source is presented. The findings indicate that the rate‐determining step is not a C?H bond cleavage but, rather, the oxidative addition of the C?I bond to a RhI center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号