首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Reactions of the dimeric cobalt complex [(L?Co)2] ( 1 , L=[(2,6‐iPr2C6H3)NC(Me)]2) with polyarenes afforded a series of mononuclear and dinuclear complexes: [LCo(η4‐anthracene)] ( 2 ), [LCo(μ‐η44‐naphthalene)CoL] ( 3 ), and [LCo(μ‐η44‐phenanthrene)CoL] ( 4 ). The pyrene complexes [{Na2(Et2O)2}{LCo(μ‐η33‐pyrene)CoL}] ( 5 ) and [{Na2(Et2O)3}{LCo(η3‐pyrene)}] ( 6 ) were obtained by treating precursor 1 with pyrene followed by reduction with Na metal. These complexes contain three potential redox active centers: the cobalt metal and both α‐diimine and polyarene ligands. Through a combination of X‐ray crystallography, EPR spectroscopy, magnetic susceptibility measurement, and DFT computations, the electronic configurations of these complexes were studied. It was determined that complexes 2 – 4 have a high‐spin CoI center coupled with a radical α‐diimine ligand and a neutral polyarene ligand. Whereas, the ligand L in complexes 5 and 6 has been further reduced to the dianion, the cobalt remains in a formal (I) oxidation state, and the pyrene molecule is either neutral or monoanionic.  相似文献   

2.
A new dinuclear cobalt(II) complex [Co2L2Cl2(CH3OH)2] ( 1 ), where HL = 3‐[(furan‐2‐ylmethylimino)methyl]‐2‐hydroxy‐5‐methylbenzaldehyde, derived from the in situ condensation of 2,6‐diformyl‐4‐methylphenol with furfurylamine, was prepared and structurally and magnetically characterized. Single crystal X‐ray structural determination reveals that the structure consists of centrosymmetric dinuclear units with each CoII ion in a slightly distorted octahedral environment. Lines’ model, which in principle can theoretically separate in spin‐only and orbital contribution, was used to fit the variable temperature susceptibility (2–300 K), suggesting an intramolecular antiferromagnetic interaction between the cobalt(II) ions.  相似文献   

3.
In a high‐yield one‐pot synthesis, the reactions of [Cp*M(η5‐P5)] (M=Fe ( 1 ), Ru ( 2 )) with I2 resulted in the selective formation of [Cp*MP6I6]+ salts ( 3 , 4 ). The products comprise unprecedented all‐cis tripodal triphosphino‐cyclotriphosphine ligands. The iodination of [Cp*Fe(η5‐As5)] ( 6 ) gave, in addition to [Fe(CH3CN)6]2+ salts of the rare [As6I8]2? (in 7 ) and [As4I14]2? (in 8 ) anions, the first di‐cationic Fe‐As triple decker complex [(Cp*Fe)2(μ,η5:5‐As5)][As6I8] ( 9 ). In contrast, the iodination of [Cp*Ru(η5‐As5)] ( 10 ) did not result in the full cleavage of the M?As bonds. Instead, a number of dinuclear complexes were obtained: [(Cp*Ru)2(μ,η5:5‐As5)][As6I8]0.5 ( 11 ) represents the first Ru‐As5 triple decker complex, thus completing the series of monocationic complexes [(CpRM)2(μ,η5:5‐E5)]+ (M=Fe, Ru; E=P, As). [(Cp*Ru)2As8I6] ( 12 ) crystallizes as a racemic mixture of both enantiomers, while [(Cp*Ru)2As4I4] ( 13 ) crystallizes as a symmetric and an asymmetric isomer and features a unique tetramer of {AsI} arsinidene units as a middle deck.  相似文献   

4.
Two novel tridentate ligands of 2,6‐bis‐[l‐(2,6‐dibromophenylimino) ethyl] pyridine (L1) and2‐acetyl‐6‐[1‐(2,6‐dibromophenylimino) ethyl] pyridine (L2) have been synthesized. The iron(II) complex of L1 and L2 has been characterized with the crystal structure of [Fe(L1)(L2)]2+ [FeCl4]2 CH2Cl2 [monoclinic, P21 (#11), a = 1.0562(4), b = 2.0928(4), c = 1.2914(2) nm, β = 100.12°, V = 2.810(1) nm3 Dc = 1.879 g/cm3 and Z = 2].  相似文献   

5.
Metal Complexes of Biologically Important Ligands. CLXVI Metal Complexes with Ferrocenylmethylcysteinate and 1,1′‐Ferrocenylbis‐(methylcysteinate) as Ligands A series of complexes of transition metal ions ( Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ ) and of lanthanide ions ( La3+, Nd3+, Gd3+, Dy3+, Lu3+ ) with the anions of ferrocenylmethyl‐L‐cysteine [(C5H5)Fe(C5H4CH(R)SCH2CH(NH3+)CO2?] (L1) and with the dianions of 1,1′‐ferrocenylbis(methyl‐L‐cysteine) [Fe(C5H4CH(R)SCH2CH(NH3+) CO2?)2] (R = H, Me, Ph) (L2) as N,O,S‐donors were prepared. With the monocysteine ferrocene derivative L1 as ligands complexes [MIIL12] or [CrIIIL12]Cl type complexes are formed whereas the bis(cysteine) ligand L2 yields insoluble complexes of type [ML2]n, presumably as coordination polymers. The magnetic moments of [MnIIL2]n, [PrIIIL2]n(OH)n and [DyIIIL2]n(OH)n exhibit “normal” paramagnetism.  相似文献   

6.
Attempted preparation of a chelated CoII β‐silylamide resulted in the unprecedented disproportionation to Co0 and a spirocyclic cobalt(IV) bis(β‐silyldiamide): [Co[(NtBu)2SiMe2]2] ( 1 ). Compound 1 exhibited a room‐temperature magnetic moment of 1.8 B.M. and a solid‐state axial EPR spectrum diagnostic of a rare S= configuration for tetrahedral CoIV. Ab initio semicanonical coupled‐cluster calculations (DLPNO‐CCSD(T)) revealed the doublet state was clearly preferred (?27 kcal mol?1) over higher spin configurations only for the bulky tert‐butyl‐substituted analogue. Unlike other CoIV complexes, 1 had remarkable thermal stability, and was demonstrated to form a stable self‐limiting monolayer in preliminary atomic layer deposition (ALD) surface saturation experiments. The ease of synthesis and high stability make 1 an attractive starting point to investigate otherwise inaccessible CoIV intermediates and for synthesizing new materials.  相似文献   

7.
The unusual reactivity of the newly synthesized β‐diketiminato cobalt(I) complexes, [(LDepCo)2] ( 2 a , LDep=CH[C(Me)N(2,6‐Et2C6H3)]2) and [LDippCo ? toluene] ( 2 b , LDipp=CH[CHN(2,6‐iPr2C6H3)]2), toward white phosphorus was investigated, affording the first cobalt(I) complexes [(LDepCo)2244‐P4)] ( 3 a ) and [(LDippCo)2244‐P4)] ( 3 b ) bearing the neutral cyclo‐P4 ligand with a rectangular‐planar structure. The redox chemistry of 3 a and 3 b was studied by cyclic voltammetry and their chemical reduction with one molar equivalent of potassium graphite led to the isolation of [(LDepCo)2244‐P4)][K(dme)4] ( 4 a ) and [(LDippCo)2244‐P4)][K(dme)4] ( 4 b ). Unexpectedly, the monoanionic Co2P4 core in 4 a and 4 b , respectively, contains the two‐electron‐reduced cyclo‐P42? ligand with a square‐planar structure and mixed‐valent cobalt(I,II) sites. The electronic structures of 3 a , 3 b , 4 a , and 4 b were elucidated by NMR and EPR spectroscopy as well as magnetic measurements and are in agreement with results of broken‐symmetry DFT calculations.  相似文献   

8.
Hydrocarbon‐bridged Metal Complexes. L Dicarbonyl Cyclopentadienyl Pyridoyl Iron Complexes as Ligands Dicarbonyl‐cyclopentadienyl‐2‐ and 3‐pyridoyl‐iron (L1, L2) and 2,6‐dicarbonyl‐pyridine‐bis(dicarbonyl‐cyclopentadienyl‐iron) (L3) function as ligands in metal complexes and the N,O‐chelates [(OC)4M(L1)] (M = Mo, W, 8 a, b ) and [(Ph3P)2Cu(L1)]+BF4 ( 9 ) were prepared. Monodentate coordination of L1 and L2 through the pyridine N‐atom occurs in the palladium(II) complexes [Cl2Pd(PnBu3)(L1)] ( 10 ), [Cl2Pd(PnBu3)(L2)] ( 11 ) and [Cl2Pd(L2)2] ( 12 ). Ligand L3 forms the O,N,O‐bis(chelate) [Cl2Zn(L3)] ( 13 ). The crystal and molecular structures of L1, 8 b (M = W), 9–11 and 13 were determined by X‐ray diffraction.  相似文献   

9.
Two CoII‐based coordination polymers, namely poly[(μ4‐biphenyl‐2,2′,5,5′‐tetracarboxylato){μ2‐1,3‐bis[(1H‐imidazol‐1‐yl)methyl]benzene}dicobalt(II)], [Co2(C16H6O8)(C14H14N4)2]n or [Co2(o,m‐bpta)(1,3‐bimb)2]n ( I ), and poly[[aqua(μ4‐biphenyl‐2,2′,5,5′‐tetracarboxylato){1,4‐bis[(1H‐imidazol‐1‐yl)methyl]benzene}dicobalt(II)] dihydrate], {[Co2(C16H6O8)(C14H14N4)2(H2O)2]·4H2O}n or {[Co2(o,m‐bpta)(1,4‐bimb)2(H2O)2]·4H2O}n ( II ), were synthesized from a mixture of biphenyl‐2,2′,5,5′‐tetracarboxylic acid, i.e. [H4(o,m‐bpta)], CoCl2·6H2O and N‐donor ligands under solvothermal conditions. The complexes were characterized by IR spectroscopy, elemental analysis, single‐crystal X‐ray diffraction and powder X‐ray diffraction analysis. The bridging (o,m‐bpta)4? ligands combine with CoII ions in different μ4‐coordination modes, leading to the formation of one‐dimensional chains. The central CoII atoms display tetrahedral [CoN2O2] and octahedral [CoN2O4] geometries in I and II , respectively. The bis[(1H‐imidazol‐1‐yl)methyl]benzene (bimb) ligands adopt trans or cis conformations to connect CoII ions, thus forming two three‐dimensional (3D) networks. Complex I shows a (2,4)‐connected 3D network with left‐ and right‐handed helical chains constructed by (o,m‐bpta)4? ligands. Complex II is a (4,4)‐connected 3D novel network with ribbon‐like chains formed by (o,m‐bpta)4? linkers. Magnetic studies indicate an orbital contribution to the magnetic moment of I and II due to the longer Co…Co distances. An attempt has been made to fit the χMT results to the magnetic formulae for mononuclear CoII complexes, the fitting indicating the presence of weak antiferromagnetic interactions between the CoII ions.  相似文献   

10.
Sm2As4O9: An Unusual Samarium(III) Oxoarsenate(III) According to Sm4[As2O5]2[As4O8] Pale yellow single crystals of the new samarium(III) oxoarsenate(III) with the composition Sm4As8O18 were obtained by a typical solid‐state reaction between Sm2O3 and As2O3 using CsCl and SmCl3 as fluxing agents. The compound crystallizes in the triclinic crystal system with the space group (No. 2, Z = 2; a = 681.12(5), b = 757.59(6), c = 953.97(8) pm, α = 96.623(7), β = 103.751(7), γ = 104.400(7)°). The crystal structure of samarium(III) oxoarsenate(III) with the formula type Sm4[As2O5]2[As4O8] (≡ 2 × Sm2As4O9) contains two crystallographically different Sm3+ cations, where (Sm1)3+ is coordinated by eight, but (Sm2)3+ by nine oxygen atoms. Two different discrete oxoarsenate(III) anions are present in the crystal structure, namely [As2O5]4? and [As4O8]4?. The [As2O5]4? anion is built up of two Ψ1‐tetrahedra [AsO3]3? with a common corner, whereas the [As4O8]4? anion consists of four Ψ1‐tetrahedra with ring‐shaped vertex‐connected [AsO3]3? pyramids. Thus at all four crystallographically different As3+ cations stereochemically active non‐binding electron pairs (“lone pairs”) are observed. These “lone pairs” direct towards the center of empty channels running parallel to [010] in the overall structure, where these “empty channels” being formed by the linkage of layers with the ecliptically conformed [As2O5]4? anions and the stair‐like shaped [As4O8]4? rings via common oxygen atoms (O1 – O6, O8 and O9). The oxygen‐atom type O7, however, belongs only to the cyclo‐[As4O8]4? unit as one of the two different corner‐sharing oxygen atoms.  相似文献   

11.
The title complexes, hexaaquacobalt(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Co(H2O)6][Bi2(C7H4NO4)4]·2H2O, (I), and hexaaquanickel(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Ni(H2O)6][Bi2(C7H4NO4)4]·2H2O, (II), are isomorphous and crystallize in the triclinic space group P. The transition metal ions are located on the inversion centre and adopt slightly distorted MO6 (M = Co or Ni) octahedral geometries. Two [Bi(pydc)2] units (pydc is pyridine‐2,6‐dicarboxylate) are linked via bridging carboxylate groups into centrosymmetric [Bi2(pydc)4]2− dianions. The crystal packing reveals that the [M(H2O)6]2+ cations, [Bi2(pydc)4]2− anions and solvent water molecules form multiple hydrogen bonds to generate a supramolecular three‐dimensional network. The formation of secondary Bi...O bonds between adjacent [Bi2(pydc)4]2− dimers provides an additional supramolecular synthon that directs and facilitates the crystal packing of both (I) and (II).  相似文献   

12.
Complexes with Macrocyclic Ligands. V Dinuclear Copper(II) Complexes with Chiral Macrocyclic Ligands of Schiff‐Base Type: Syntheses and Structures The synthesis and properties of four chiral, dinuclear, macrocyclic, cationic copper(II) complexes, [Cu2(Lm,n)]2+ ( 1 – 4 ), are described. The two symmetrical compounds [Cu2(L2,2)][ClO4]2 ( 1 and 2 ) were synthesized in a one‐step reaction from 2,6‐diformyl‐4‐tert.‐butylphenol, copper(II)‐perchlorate and the chiral diamine (1S,2S)‐1,2‐diphenylethylenediamine (synthesis of 1 ) and (1R,2R)‐1,2‐diaminocyclohexane (synthesis of 2 ), respectively. For the synthesis of the two unsymmetrical compounds [Cu2(LPh,n)][ClO4]2 ( 3 and 4 ) the mononuclear, neutral copper(II) complex [CuLPh] ( 5 ) [synthesized from 2,6‐diformyl‐4‐tert.‐butylphenol, copper(II)‐acetate and 1,2‐phenylenediamine] was reacted with (1R,2R)‐1,2‐diaminocyclohexane (synthesis of 3 ) and (S)‐1,1′‐binaphthyl‐2,2′‐diamine (synthesis of 4 ), respectively. The structures of the two unsymmetrical copper(II) compounds ( 3 and 4 ) were determined by X‐ray diffraction.  相似文献   

13.
The sterically demanding β‐diketiminate ligand Ldmp [Ldmp = HC{(CMe)N(dmp)}2, dmp = C6H3‐2,6‐Me2] was used to stabilize various gallium complexes in the formal oxidation states +II and +III. The reaction of in situ generated [LdmpLi] with gallium chloride affords [LdmpGaCl2] ( 1 ), which was used as starting complex to synthesize a variety of gallium(III) compounds [LdmpGaX2] [X = F ( 2 ), I ( 3 ), H ( 4 ), and Me ( 5 )]. Synthesis of the dinuclear complex [LdmpGaI]2 ( 6 ), with gallium in the formal oxidation state +II was accomplished by converting “GaI” with in situ generated [LdmpLi] in toluene. All compounds were characterized by elemental analyses, NMR spectroscopy, LIFDI‐TOF‐MS, and single‐crystal X‐ray diffraction. Additionally DFT calculations were performed for analysis of the bonding in 6 .  相似文献   

14.
Black‐brown needle‐shaped single crystals of [Co2(en)4(O2)(OH)][C4O4]1.5 · 4H2O (en = ethylenediamine) were prepared in aqueous solution at room temperature [space group P$\bar{1}$ (no.2) with a = 800.20(8), b = 1225.48(7), c = 1403.84(9) pm, α = 100.282(5), β = 94.515(7), and γ = 95.596(6)°]. The Co3+ cations [Co(1), Co(2)] are coordinated in an octahedral manner by four nitrogen atoms stemming from the ethylenediamine molecules and two oxygen atoms each from a hydroxo group and a peroxo group, respectively. Both Co3+ coordination polyhedra are connected by a common corner and by the peroxo group leading to the dinuclear [(en)2Co(O2)(OH)Co(en)2]3+ cation. The squarate dianions, not bonded to Co3+, and the [(en)2Co(O2)(OH)Co(en)2]3+ cations are linked by hydrogen bonds forming a three‐dimensional supramolecular network containing water molecules. Magnetic measurements revealed a diamagnetic behavior indicating a low‐spin electron configuration of Co3+. The UV/Vis spectra show two LMCT bands [π*(O22–) → dσ*(Co3+)] at 274 and 368 nm and the d–d transition (1A1g1T1g) at 542 nm. Thermoanalytical investigations in air show that the compound is stable up to 120 °C. Subsequent decomposition processes to cobalt oxide are finished at 460 °C.  相似文献   

15.
In acetate buffer media (pH 4.5–5.4) thiosulfate ion (S2O32?) reduces the bridged superoxo complex, [(NH3)4CoIII(μ‐NH2,μ‐O2)CoIII(NH3)4]4+ ( 1 ) to its corresponding μ‐peroxo product, [(NH3)4CoIII(μ‐NH2,μ‐O2)CoIII(NH3)4]3+ ( 2 ) and along a parallel reaction path, simultaneously S2O32? reacts with 1 to produce the substituted μ‐thiosulfato‐μ‐superoxo complex, [(NH3)4CoIII(μ‐S2O3,μ‐O2)CoIII(NH3)4]3+ ( 3 ). The formation of μ‐thiosulfato‐μ‐superoxo complex ( 3 ) appears as a precipitate which on being subjected to FTIR shows absorption peaks that support the presence of Co(III)‐bound S‐coordinated S2O32? group. In reaction media, 3 readily dissolves to further react with S2O32? to produce μ‐thiosulfato‐μ‐peroxo product, [(NH3)4CoIII(μ‐S2O3,μ‐O2)CoIII(NH3)4]2+ ( 4 ). The observed rate (k0) increases with an increase in [TThio] ([TThio] is the analytical concentration of S2O32?) and temperature (T), but it decreases with an increase in [H+] and the ionic strength (I). Analysis of the log At versus time data (A is the absorbance of 1 at time t) reveals that overall the reaction follows a biphasic consecutive reaction path with rate constants k1 and k2 and the change of absorbance is equal to {a1 exp(–k1t) + a2 exp(–k2t)}, where k1 > k2.  相似文献   

16.
The ligand 1,3‐bis[3‐oxo‐3‐(2‐hydroxyphenyl)propionyl]benzene (H4L), designed to align transition metals into tetranuclear linear molecules, reacts with MII salts (M=Ni, Co, Cu) to yield complexes with the expected [MM???MM] topology. The novel complexes [Co4L2(py)6] ( 2 ; py=pyridine) and [Na(py)2][Cu4L2(py)4](ClO4) ( 3 ) have been crystallographically characterised. The metal sites in complexes 2 and 3 , together with previously characterised [Ni4L2(py)6] ( 1 ), favour different coordination geometries. These have been exploited for the deliberate synthesis of the heterometallic complex [Cu2Ni2L2(py)6] ( 4 ). Complexes 1 , 2 , 3 and 4 exhibit antiferromagnetic interactions between pairs of metals within each cluster, leading to S=0 spin ground states, except for the latter cluster, which features two quasi‐independent S=1/2 moieties within the molecule. Complex 4 gathers the structural and physical conditions, thus allowing it to be considered as prototype of a two‐qbit quantum gate.  相似文献   

17.
Redox reactions of [(L1,2Mg)2] and Sb2R4 (R=Me, Et) yielded the first Mg‐substituted realgar‐type Sb8 polystibides [(L1,2Mg)442:2:2:2‐Sb8)] (L1=HC[C(Me)N(2,4,6‐Me3C6H2)]2, L2=HC[C(Me)N(2,6‐i‐Pr2C6H3)]2). Compounds [(L1,2Mg)2] serve both as reducing agents, initiating the cleavage of the Sb?C bonds, and as stabilizers for the resulting Sb8 polyanion. The polystibides were characterized by NMR and IR spectroscopies, elemental analysis, and X‐ray structure analysis. In addition, results from quantum chemical calculations are presented.  相似文献   

18.
Two metal‐organic coordination polymers of CoII with the molecular formulae [Co(L1)(tp)(H2O)2]n ( 1 ) and [Co(L2)(tp) · H2O]n ( 2 ) [L1 = 1, 4‐bis(benzimidazole‐1‐ylmethyl)‐ benzene; L2 = 1, 1‐(1, 4‐butanediyl)bis(5, 6‐dimethylbenzimidazole); tp = terephthalate] were synthesized and characterized by single‐crystal X‐ray diffraction studies, infrared spectroscopy (IR), thermogravimetric analysis (TGA), X‐ray powder diffraction (XRPD), and elemental analysis. The structure determination of complex 1 reveals a 2D layer with (4, 4) topology, with CoII ions at the nodes connected through tp and L1 co‐ligands. Complex 2 is the first example of a four‐connected SrAl2 structure type ( sra , 42638 topology) with threefold interpenetration in CoII coordination frameworks, forming by bridging L2 and tp co‐ligands. In addition, the fluorescence and catalytic performances of the complexes for the degradation of methyl orange were investigated.  相似文献   

19.
Simultaneous incorporation of both CoII and CoIII ions within a new thioether S‐bearing phenol‐based ligand system, H3L (2,6‐bis‐[{2‐(2‐hydroxyethylthio)ethylimino}methyl]‐4‐methylphenol) formed [Co5] aggregates [CoIICoIII4L2(μ‐OH)2(μ1,3‐O2CCH3)2](ClO4)4?H2O ( 1 ) and [CoIICoIII4L2(μ‐OH)2(μ1,3‐O2CC2H5)2](ClO4)4?H2O ( 2 ). The magnetic studies revealed axial zero‐field splitting (ZFS) parameter, D/hc=?23.6 and ?24.3 cm?1, and E/D=0.03 and 0.00, respectively for 1 and 2 . Dynamic magnetic data confirmed the complexes as SIMs with Ueff/kB=30 K ( 1 ) and 33 K ( 2 ), and τ0=9.1×10?8 s ( 1 ), and 4.3×10?8 s ( 2 ). The larger atomic radius of S compared to N gave rise to less variation in the distortion of tetrahedral geometry around central CoII centers, thus affecting the D and Ueff/kB values. Theoretical studies also support the experimental findings and reveal the origin of the anisotropy parameters. In solutions, both 1 and 2 which produce {CoIII2(μ‐L)} units, display solvent‐dependent catechol oxidation behavior toward 3,5‐di‐tert‐butylcatechol in air. The presence of an adjacent CoIII ion tends to assist the electron transfer from the substrate to the metal ion center, enhancing the catalytic oxidation rate.  相似文献   

20.
Three diacylthioureas 1,4‐C6H4[C(O)NHC(S)NHAr]2 (Ar = 2,6‐iPr2C6H3) ( L1 , 1 ), 1,3‐C6H4[C(O)NHC(S)NHAr]2 ( L2 , 2 ), and 1,3‐C6H4[C(O)NHC(S)NHAr′]2 (Ar′ = 2,6‐Me2C6H3) ( L3 , 3 ) were synthesized and characterized. The CuI complexes from the reactions of bipodal ligands Ln with CuX (X = Cl, Br, I) were structurally investigated by single‐crystal X‐ray diffraction methods. Treatment of L1 with CuX gave the metallamacrocyclic complexes ( L1 CuX)2 [X = Cl ( 4 ), Br ( 5 ), I ( 6 )] with the ligand to metal in a ratio of 2:2, where both sulfur and halide anions function as terminal substituents. In contrast, when L2 or L3 was reacted with CuBr, the two Ln ligands coordinate to four copper atoms each in a bridging and terminal fashion to yield [ Ln (CuBr)2]2 [n = 2 ( 7 ), 3 ( 8 )]. The obtained S4Cu4Br4 core contains all four bromide anions in bridging positions. The reaction of L3 with CuX (X = Cl, I) gave the 3:3 trinuclear complexes ( L3 CuX)3 [X = Cl ( 9 ) I ( 10 )], interconnected by halide bridges. The obtained diacylthioureas ( 1 – 3 ) and their CuI complexes ( 4 – 10 ) were also characterized by elemental analysis, FT‐IR, 1H and 13C NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号