首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The features of the enzymatic degradation process mediated by the nonspecific enzymes collagenase and Lyrase are discussed for chitosan films prepared from acetic acid solutions. It was shown that variations in the acid concentration in the initial solution have a substantial effect on both the structure of chitosan in the film formed and the degree of degradation of film samples.  相似文献   

2.
研究了羟基丁酸 羟基戊酸共聚物 (PHBV)在脂肪酶中的降解行为 ,用滴定法测定降解速度并进行酶促反应动力学研究 .探讨了降解速度与酶浓度和底物浓度的数学关系和Michaelis Menten常数 ,从实验上和理论上证实了PHBV的物理形态和几何尺寸对酶降解过程的影响 ,以及实验数据与非均相动力学模型的拟合  相似文献   

3.
Macromolecular effects were revealed in the course of enzymatic degradation of chitosan in an acetic acid solution under the action of hyaluronidase, a nonspecific enzyme. It was shown that the concentration of chitosan in the initial solution determines its supramolecular organization and, hence, the degree of enzymatic degradation.  相似文献   

4.
Poly(epsilon-caprolactone) (PCL)/chitin and PCL/chitosan blend films with compositional gradients were successfully fabricated by a dissolution/diffusion method; that is, repeatedly pouring the PCL/chitin (or PCL/chitosan) blend solutions, with variable composition, onto polysaccharide layers. The compositional gradient structure in the resulting films was characterized by polarized optic microscopy, ATR-FT-IR and trans-FT-IR microscopic spectroscopy. Enzymatic degradability of the PCL/chitin and PCL/chitosan blend films with compositional gradients in the presence of lysozyme was compared with those of homogeneous films and two-layer films. It was found that the degradation rate of PCL/chitin blend films with a compositional gradient was far lower than that of the neat chitin film, whereas the degradation rate of PCL/chitosan blend films with a compositional gradient was close to that of the neat chitosan film. The suppression of the chitosan crystallization, which accelerates the enzymatic degradation, at the surface of PCL/chitosan films with a compositional gradient was much more severe than that for PCL/chitin films with a compositional gradient.  相似文献   

5.
Polyhydroxyalkanoates (PHAs) are hydrophobic biodegradable thermoplastics that have received considerable attention in biomedical applications due to their biocompatibility, mechanical properties, and biodegradability. In this study, the degradation rate was regulated by optimizing the interaction of parameters that influence the enzymatic degradation of P(3HB) film using response surface methodology (RSM). The RSM model was experimentally validated yielding a maximum 21 % weight loss, which represents onefold increment in percentage weight loss in comparison with the conventional method. By using the optimized condition, the enzymatic degradation by an extracellular PHA depolymerase from Acidovorax sp. DP5 was studied at 37 °C and pH 9.0 on different types of PHA films with various monomer compositions. Surface modification of scaffold was employed using enzymatic technique to create highly porous scaffold with a large surface to volume ratio, which makes them attractive as potential tissue scaffold in biomedical field. Scanning electron microscopy revealed that the surface of salt-leached films was more porous compared with the solvent-cast films, and hence, increased the degradation rate of salt-leached films. Apparently, enzymatic degradation behaviors of PHA films were determined by several factors such as monomer composition, crystallinity, molecular weight, porosity, and roughness of the surface. The hydrophilicity and water uptake of degraded salt-leached film of P(3HB-co-70%4HB) were enhanced by incorporating chitosan or alginate. Salt-leached technique followed by partial enzymatic degradation would enhance the cell attachment and suitable for biomedical as a scaffold.  相似文献   

6.
The degradative activities of neutral protease against chitosan samples with different molecular parameters were characterized. The effects of the degree of deacetylation (DD) and molecular weight (MW) of chitosan on its susceptibility to degradation were investigated. The DD and MW of the chitosans were determined using potentiometric titration and viscometry, respectively. The molecular weight distribution of initial and degraded commercial chitosan was investigated by gel permeation chromatography. Initial degradation rates (r) were determined from the plots of viscosity decrease against time of degradation. The time courses of degradation of chitosans with neutral protease were non-linear and the enzymatic hydrolysis was an endo-action. Classical Michaelis-Menten kinetic parameters were measured by analyzing the amount of reducing sugars and Eadie-Hofstee plots established that hydrolysis of chitosan by neutral protease obeyed Michaelis-Menten kinetics. Michaelis-Menten parameters and initial degradation rates were calculated and compared to determine the influences of DD and MW on hydrolysis. The results showed that higher DD and higher MW chitosans possessed a lower affinity for the enzyme and a slower degradation rate. Those samples with a lower DD and lower MW were more susceptible substrates.  相似文献   

7.
This research studies the morphology and characterization of three-dimensional (3D) micro-porous structures produced from biodegradable chitosan for use as scaffolds for cells culture. The chitosan 3D micro-porous structures were produced by a simple liquid hardening method, which includes the processes of foaming by mechanical stirring without any chemical foaming agent added, and hardening by NaOH cross linking. The pore size and porosity were controlled with mechanical stirring strength. This study includes the morphology of chitosan scaffolds, the characterization of mechanical properties, water absorption properties and in vitro enzymatic degradation of the 3D micro-porous structures. The results show that chitosan 3D micro-porous structures were successfully produced. Better formation samples were obtained when chitosan concentration is at 1–3%, and concentration of NaOH is at 5%. Faster stirring rate would produce samples of smaller pore diameter, but when rotation speed reaches 4000 rpm and higher the changes in pore size is minimal. Water absorption would reduce along with the decrease of chitosan scaffolds’ pore diameter. From stress–strain analysis, chitosan scaffolds’ mechanical properties are improved when it has smaller pore diameter. From in vitro enzymatic degradation results, it shows that the disintegration rate of chitosan scaffolds would increase along with the processing time increase, but approaching equilibrium when the disintegration rate reaches about 20%.  相似文献   

8.
The features of enzymatic degradation of modified chitosan films prepared from acetic acid solutions using Collagenase KK enzyme preparation was studied.  相似文献   

9.
The effects of crystallinity and temperature on enzymatic degradation of poly‐ε‐caprolactone (PCL) films and structural changes after degradation have been studied using weight loss, differential scanning calorimetry, and optical microscopy. The weight loss during the enzymatic degradation of PCL suggested that the extent of biodegradation and the rate of degradation strongly depend on the initial crystallinity. PCL films of lower crystallinity (24%) degraded much faster than films of higher crystallinity (45%). The crystallinity of low‐crystalline PCL films increased with increasing degradation time, whereas the crystallinity of high‐crystalline PCL films decreased with time. The spherulite size increased with increasing degradation time for low‐crystalline samples but decreased with time for high‐crystalline samples. These results revealed that degradation occurs first in the amorphous region where the degradation rate is much higher, and the crystalline region of the PCL film started to degrade simultaneously for those PCL with higher crystallinity. The enzymatic degradation of PCL proceeded from the free amorphous to restricted amorphous followed by lamellar edges, where PCL chains have higher mobility irrespective of hydrolysis temperature. Caproic acid was identified as the primary product formed after degradation and confirmed by proton nuclear magnetic resonance spectroscopy, suggesting that degradation occurs through the depolymerization mechanism. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 202–211, 2010  相似文献   

10.
Jiang H  Wang Y  Huang Q  Li Y  Xu C  Zhu K  Chen W 《Macromolecular bioscience》2005,5(12):1226-1233
An ampholytic N-carboxyethyl chitosan (CEC), with various isoelectric points (IPs), was synthesized by grafting acrylic acid on chitosan utilizing Michael's reaction. Compared to native chitosan, CEC has enhanced water solubility and dramatically accelerated enzymatic degradation; the rate of degradation is proportional to the degree of substitution (DS). The results from turbidimetric titration and fluorescence studies revealed that CEC formed complexes with either hyaluronic acid (HA) or bovine serum albumin (BSA) within a certain pH range. The HA/CEC/BSA ternary complexes could be prepared by colloid titration with quantitative yield and BSA entrapment. The rate of BSA release from the complexes was affected by pH, ionic strength, DS of CEC, and the molecular weight (MW) of HA. The endurance of BSA release from the complexes could be extended up to 20 d by formulating them with high-MW HA and CEC with low DS.BSA release profiles from HA/CEC-2/BSA complexes.  相似文献   

11.
Piezoelectric quartz crystal impedance analysis technique was applied to study the chitosanolytic activity of pepsin. The method is based on the viscosity-density reduction of chitosan solution during the enzymatic degradation process. Experiments examined the time courses of the variations of motional resistance (deltaR1) for a quartz crystal. By comparing the deltaR1 response curves under different degradation conditions, the effects of pH, temperature, enzyme and substrate concentration on the chitosanolytic activity of pepsin was investigated in detail. The results suggest that the optimum pH and temperature were 4.6 and 55 degrees C, respectively. Increasing aptly the enzyme or substrate concentration was in favor of the degradation of chitosan. Moreover, the influence of the degree of deacetylation (DD) on the enzymatic degradation was studied. The result indicates that chitosan with a lower DD was easier to be degrade compared with chitosan with a higher DD. Also, it was found that there was a good linear relationship between the deltaR1 response and the DD value. The regression equation was deltaR1 = 0.058 x DD-6.795 and the correlation coefficient was 0.987.  相似文献   

12.
Thermal degradation of as-electrospun chitosan membranes and samples subsequently treated with ethanol and cross-linked with glutaraldehyde has been studied by thermogravimetry (TG) coupled with an infrared spectrometer. The influence of the electrospinning process and cross-linking in the electrospun chitosan thermal stability was evaluated. Up to three degradation steps were observed in the TG data, corresponding to water dehydration reaction at temperatures below 100 °C, loss of side groups formed between the amine groups of chitosan and trifluoroacetic acid between 150 and 270 °C and chitosan thermal degradation that starts around 250 °C and goes up to 400 °C. The Kissinger model was employed to evaluate the activation energies of the electrospun membranes during isothermal experiments and revealed that thermal degradation activation energy increases for the samples processed by electrospinning and subsequent neutralization and cross-linking treatments with respect to the neat chitosan powder.  相似文献   

13.
Blends of chitosan and biodegradable synthetic aliphatic polyesters (polycaprolactone, poly(butylene succinate), poly[(butylene succinate)-co-adipate], poly[(butylene terephthalate)-co-adipate], and poly(lactic acid)) were injection-molded. These samples were immersed in isotonic solution at 37 degrees C for a period of 60 d. The water uptake and the degradation properties, as measured by the loss in tensile strength, were evaluated as a function of time. In this study, the rate and the equilibrium water uptake were proportional to the amount of chitosan in the blend. The addition of HA to chitosan and polyester significantly reduced the equilibrium water uptake. The water uptake did not follow the classical Fickian phenomena and could be expressed by a two-stage sorption non-Fickian diffusion model. Contact angle measurement was used to quantify the changes in surface hydrophilicity as a function of chitosan and polyester composition. The glycerol contact angle decreased with increasing synthetic components in the blend. The blends and composites also showed increased degradation, as quantified by a loss in their mechanical properties, with increase in natural content. The degradation of properties was directly related to the water uptake of the blends; the higher the water uptake, the higher the degradation. Pure polyesters, while having low water uptake, nevertheless showed significant degradation by a precipitous drop in the strain at break. Among the polyesters, poly(lactic acid) displayed maximum degradation, while polycaprolactone displayed the least.  相似文献   

14.
Effect of hemicellulase on the molecular weight and structure of chitosan   总被引:5,自引:0,他引:5  
A cheap, commercially available and efficient hemicellulase was used to degrade partially N-acetylated chitosan. The degradation was monitored by gel permeation chromatography. Factors affecting the enzymatic hydrolysis of chitosan are studied. The degraded chitosans were characterized by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, Fourier transform infrared and magnetic resonance spectroscopy. The results show that the enzymatic hydrolysis was endo-action and mainly occurred in a random fashion. The total degree of acetylation of chitosan did not change after degradation. The decrease of molecular weight led to transformation of crystal structure, decrease of thermal stability and the increase of water-solubility, but the chemical structures of residues were not modified.  相似文献   

15.
Russian Journal of Applied Chemistry - Enzymatic degradation of polymer-colloid dispersions of chitosan acetate and chitosan succinamide with silver iodide sols was studied. The enzymatic...  相似文献   

16.
Poly(methyl methacrylate-g-3-hydroxybutyrate) films were prepared from new graft polymers synthesised by an anionic grafting reaction of 3-butyrolactone (3-BL) on poly(methyl methacrylate) (PMMA). The resulting graft polymers form a transparent film of a one phase system, as revealed by DSC measurements. A plasticisation effect was observed for film samples containing the PBL grafted chains. This effect increased with increasing amount of PBL in the graft copolymer. The mechanical properties of the films were investigated, and thermal, hydrolytic and enzymatic degradation behaviours were evaluated. Disintegration of the films was observed during their hydrolytic degradation in phosphate buffer.  相似文献   

17.
基于聚合物复合物和层层组装技术实现了大分子药物硫酸软骨素和小分子药物头孢曲松钠在聚合物膜中的高效负载以及差别性释放. 壳聚糖(CHI)和大分子药物硫酸软骨素(CSS)通过静电相互作用力复合, 制备了壳聚糖-硫酸软骨素复合物(CHI-CSS). 以CHI-CSS复合物和透明质酸(HA)为构筑基元, 通过层层组装构筑负载有硫酸软骨素的聚合物复合物膜. 利用后扩散的负载方法将小分子药物头孢曲松钠(CTX)负载到聚合物膜中, 从而实现大分子和小分子2种药物在聚合物膜中的负载. 聚合物膜中负载的CTX和CSS在生理条件下具有快慢不同的差别性释放动力学特性, CTX在6 h内快速释放, 而CSS长效缓释长达14 d. 快速释放的抗生素CTX能够有效抑制细菌感染, 而酶降解作用下缓慢释放的CSS可促进伤口愈合, 在包括头颈外科在内的外科术后感染防治领域有良好应用前景.  相似文献   

18.
We have investigated the in vitro degradation of poly(lactic-co-glycolic) acid copolymer with a lactic to glycolic ratio of 65/35. The degradation studies were performed on solvent-cast films of controlled thickness and shape. The samples were then incubated at 37 °C in phosphate buffered saline solution. The degradation was followed using potentiometry, light microscopy, gravimetry, gel permeation chromatography and differential scanning calorimetry. Water was found to diffuse inside the film as soon as the sample was placed in the degradation media. Wrinkles formed on the upper layer while degradation took place via chain scission in the bulk of the film. After 10 days, this led to the creation of a vesicle where liquid low molecular weight oligomers were trapped inside a thin film of high molecular weight polymer. This thin film acted as a membrane allowing only low molecular weight compounds to diffuse out of the film.  相似文献   

19.
先将壳聚糖(CH)经乳酸改性制成壳聚糖乳酸盐(LCH)以改善其溶解性, 然后通过加入冰晶生长引导剂叔丁醇(TBA), 在特制的定向冷冻装置中冻结, 再经冷冻干燥后, 制成了一种圆柱形的海绵体, 其内部具有垂直方向上的孔道结构. 通过控制叔丁醇的浓度, 制备了具有不同孔径及孔隙率的海绵样品. 以红霉素为模型药物, 研究了具有自身降解溶蚀功能的LCH样品的体外释药模型, 结果表明, LCH样品的释药过程主要分为基体溶蚀控释和药物后扩散2个阶段. 其中基体控释阶段符合Couarraze释药模型.  相似文献   

20.
While microcantilevers offer exciting opportunities for mechano-detection, they often suffer from limitations in either sensitivity or selectivity. To address these limitations, we electrodeposited a chitosan film onto a cantilever surface and mechano-transduced detection events through the chitosan network. Our first demonstration was the detection of nucleic acid hybridization. In this instance, we electrodeposited the chitosan film onto the cantilever, biofunctionalized the film with oligonucleotide probe, and detected target DNA hybridization by cantilever bending in solution (static mode) or resonant frequency shifts in air (dynamic mode). In both detection modes, we observed a two-order of magnitude increase in sensitivity compared to values reported in literature for DNA immobilized on self-assembled monolayers. In our second demonstration, we coupled electrochemical and mechanical modes to selectively detect the neurotransmitter dopamine. A chitosan-coated cantilever was biased to electrochemically oxidize dopamine solution. Dopamine's oxidation products react with the chitosan film and create a tensile stress of approximately 1.7 MPa, causing substantial cantilever bending. A control experiment was performed with ascorbic acid solution. It was shown that the electrochemical oxidation of ascorbic acid does not lead to reactions with chitosan and does not change cantilever bending. These results suggest that chitosan can confer increased sensitivity and selectivity to microcantilever sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号