首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Guest-free guanidinium organomonosulfonates (GMS) and their inclusion compounds display a variety of lamellar crystalline architectures distinguished by different "up-down" projections of the organomonosulfonate residues on either side of a two-dimensional (2D) hydrogen-bonding network of complementary guanidinium ions (G) and sulfonate moieties (S), the so-called GS sheet. Using a combinatorial library of 24 GMS hosts and 26 guest molecules, a total of 304 inclusion compounds out of a possible 624 possible host-guest combinations were realized, revealing a remarkable capacity of the GMS hosts to form inclusion compounds despite the facile formation of the corresponding guest-free compounds and the absence of "predestined" inclusion cavities like those in related guanidinium organodisulfonate host frameworks. The GS sheets in the inclusion compounds behave as "molecular jaws" in which organomonosulfonate groups projecting from opposing sheets clamp down on the guest molecules, forming ordered interdigitated arrays of the host organic groups and guests. Both the guest-free and inclusion compounds display a variety of architectures that reveal the structural integrity of two-dimensional GS sheet and the unique ability of these hosts to conform to the steric demands of the organic guests. Certain GMS host-guest combinations prompt formation of tubular inclusion compounds in which the GS sheet curls into cylinders with retention of the 2D GS network. The cylinders assemble into hexagonal arrays through interdigitation of the organosulfonate residues that project from their outer surfaces, crystallizing in high-symmetry trigonal or hexagonal space groups. This unique example of network curvature and structural isomerism between lamellar and cylindrical structures, with retention of supramolecular connectivity, is reminiscent of the phase behavior observed in surfactant microstructures and block copolymers. The large number of host-guest combinations explored here permits grouping of the inclusion compound architectures according to the shape of the guests and the relative volumes of the organomonosulfonate groups, enabling more reliable structure prediction for this class of compounds than for molecular crystals in general.  相似文献   

2.
Crystalline monolayers of octadecylsulfonate amphiphiles (C18S) separated by hydrophilic guanidinium (G) spacer molecules were formed at the air-water interface at a surface coverage that was consistent with that expected for a fully condensed monolayer self-assembled by hydrogen bonding between the G ions and the sulfonate groups. The surface pressure-area isotherms reflected reinforcement of this monolayer by hydrogen bonding between the G ions and the sulfonate groups, and grazing incidence X-ray diffraction (GIXD) measurements, performed in-situ at the air-water interface, revealed substantial tilt of the alkyl hydrophobes (t = 49 degrees with respect to the surface normal), which allowed the close packing of the C18 chains needed for a stable crystalline monolayer. This property contrasts with behavior observed previously for monolayers of hexadecylbiphenylsulfonate (C16BPS) and G, which only formed crystallites upon compression, accompanied by ejection of the G ions from the air-water interface. Upon compression to higher surface pressures, GIXD revealed that the highly tilted (G)C18S monolayer crystallites transformed to a self-interdigitated (G)C18S crystalline multilayer accompanied by a new crystalline monolayer phase with slightly tilted alkyl chains and disordered sulfonate headgroups. This transformation was dependent on the rate of compression, suggesting kinetic limitations for the "zipper-like" transformation from the crystalline monolayer to the self-interdigitated (G)C18S crystalline multilayer.  相似文献   

3.
We describe herein new structural isomers of a lamellar host system based on organodisulfonate "pillars" that connect opposing hydrogen-bonded sheets, consisting of topologically complementary guanidinium (G) ions and sulfonate (S) groups, to generate inclusion cavities between the sheets. These new isomers-zigzag brick, double brick, V-brick, and crisscross bilayer-expand significantly on our earlier report of architectural isomerism displayed by the discrete bilayer and simple brick forms. We demonstrate here that the discrete bilayer-simple brick isomerism, which was limited to several host-guest combinations based on the G(2)(4,4'-biphenyldisulfonate) host and one pair of compounds based on the G(2)(2,6-naphthalenedisulfonate), can be generalized to other organodisulfonate pillars. Furthermore, in many cases the selectivity toward the different framework isomers reflects a rather systematic templating role of the guest molecules and host-guest recognition during assembly of the lattice. We also describe a convenient approach to identifying and classifying the innumerable possible host architectures based upon the pillar projection topologies for the GS sheets and the intersheet connectivities. The discovery of these new architectures reveals a structural versatility for this class of materials that exceeds initial expectations and observations. Each topology produces different connectivities between the sheets in the third dimension that endows each framework isomer with uniquely shaped and sized inclusion cavities, enabling this host system to conform readily to different guests. The unlimited number of architectures available, combined with the inherent conformational softness and structural tunability of these host lattices, suggests a near universality for the GS system with respect to guest inclusion.  相似文献   

4.
Interaction between tetramethylcucurbit[6]uril (TMeQ[6], host) with hydrochloride salts of 2-phenylpridine (G1), 2-benzylpyridine (G2), and 4-benzylpyridine (G3) (guests) have been investigated by using 1H NMR spectroscopy and electronic absorption spectroscopy and theoretical calculations. The 1H NMR spectra analysis established an interaction model in which the host selectively included the phenyl moiety of the HCl salt of the above three guests, and formed inclusion complexes with a host-guest ratio of 1:1. Absorption spectrophotometric analysis allowed quantitative measurement of the stability of these host-guest inclusion complexes. Particularly, we have established a competitive interaction in which one host-guest inclusion complex pair is much more stable than another host-guest inclusion complex pair. The stability constants for the three host-guest inclusion complexes of TMeQ[6]-G1, TMeQ[6]-G2, and TMeQ[6]-G3 are approximately 2x10(6), 60.7, and 19.9 mol-1.L, respectively. To understand how subtle differences in the structure of the title guests lead to a significant difference in the stability of the corresponding host-guest inclusion complexes with the TMeQ[6], ab initio theoretical calculations have been performed, not only for the gas phase but also the solution phase (water as solvent) in all cases. The calculation results revealed that when the phenyl moiety of the three pyridine derivate guests was included, the host-guest complexation reached the minimum, and the corresponding energy differences for the formation of the title host-guest inclusion complexes are qualitatively consistent with the experimental results.  相似文献   

5.
This paper describes the host properties of a new cucurbit[6]uril analogue, studied by fluorescence and 1H NMR spectroscopy. This host has an elongated cavity with oval-shaped portals. It is intrinsically fluorescent, and more importantly, this fluorescence is sensitive to guest encapsulation, allowing for the study of the inclusion of nonfluorescent guests by fluorescence spectroscopy. In the case of benzene as guest, significant enhancement of the cucurbit[6]uril analogue host fluorescence was observed upon addition of benzene; this allowed for the determination of the binding constant for 1:1 host-guest complexation, yielding a value of K = 6900 +/- 1100 M(-1). This complexation was also studied by 1H NMR, yielding a similar value of K = 8980 +/- 500 M(-1). The binding of a much larger guest, the dye Nile Red, was also studied, but in this case using guest fluorescence. Significant suppression of the Nile Red fluorescence was observed upon 1:1 complexation with the cucurbit[6]uril analogue, with an extremely large binding constant of 8.2 +/- 0.5 x 10(6) M(-1), indicating a very strong host-guest interaction and an excellent size and shape match. In both cases, binding was much stronger than in the case of the same guests with cucurbit[6]uril itself, and in the case of Nile Red, binding was also much stronger than with modified beta- or gamma-cyclodextrins. This is partly a result of the partial aromatic nature of the host walls, which allow for pi-pi interactions not possible in cucurbiturils or cyclodextrins. The ability to study its inclusion complexes using either host or guest fluorescence, and the very high binding constants observed, illustrates the versatility and potential usefulness of this new host compound.  相似文献   

6.
The effect of macrocycle size on the structure-property relationships was studied for inclusion compounds of tert-butylcalix[n]arenes (n=4,5) with volatile organic guests having various molecular size and group composition. Vapor-sorption isotherms, guest-inclusion stoichiometry and Gibbs energy, thermostability parameters and decomposition enthalpies were determined for host-guest compounds (clathrates) obtained using saturation of solid calixarene powder with guest vapor. The increase of the host macrocycle in the studied calixarene pair changes the observed structure-property relationship from the guest-binding selectivity mostly seen in inclusion Gibbs energy to the high sensitivity for guest structure in inclusion stoichiometry. The host with the larger macrocycle has more clathrates with stepwise formation and decomposition. Specific types of guest binding with solid hosts are discussed.  相似文献   

7.
A microstructured ionic crystal, K(3)[Cr(3)O(OOCH)(6)(H(2)O)(3)][alpha-SiW(12)O(40)].16 H(2)O (1) was synthesized by the complexation of the Keggin-type polyoxometalate of [alpha-SiW(12)O(40)](4-) with a macrocation of [Cr(3)O(OOCH)(6)(H(2)O)(3)](+). Compound 1 possessed a straight channel, with an opening of approximately 0.5x0.8 nm, which contained the water of crystallization. The use of the macrocation with large size (0.7 nm) and small charge (+1) reduced the anion-cation interaction and was essential for the channel formation. The molecular structures of the polyoxometalate and the macrocation in 1 were retained under vacuum at 473 K. Analogues of 1 were synthesized with [alpha-PVW(11)O(40)](4-) or [Fe(3)O(OOCH)(6)(H(2)O)(3)](+). The water of crystallization in 1 was removed under vacuum at room temperature to form the closely packed guest-free phase 2. Compound 2 reversibly and repeatedly included water and polar organic molecules with two carbon atoms or less. Guest inclusion was highly selective and a difference of even one methylene group in the organic guest molecule was discriminated by the host. Polar organic molecules with longer methylene chains and nonpolar molecules such as dinitrogen and methane were completely excluded. The guest-inclusion properties could be explained by the ion-dipole interaction between the host and the guest, which is proportional to the dipole moment of the guest molecule and inversely proportional to the ion-dipole (host-guest) distance. Thus, small polar molecules were selectively absorbed. These distinctive guest-inclusion properties were successfully applied to the oxidation of methanol from a mixture of C(1) and C(2) alcohols. These results show unique guest inclusion and catalysis by rationally designed ionic crystals.  相似文献   

8.
The self-assembled supramolecular complex [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) can act as a molecular host in aqueous solution and bind cationic guest molecules to its highly charged exterior surface or within its hydrophobic interior cavity. The distinct internal cavity of host 1 modifies the physical properties and reactivity of bound guest molecules and can be used to catalyze a variety of chemical transformations. Noncovalent host-guest interactions in large part control guest binding, molecular recognition and the chemical reactivity of bound guests. Herein we examine equilibrium isotope effects (EIEs) on both exterior and interior guest binding to host 1 and use these effects to probe the details of noncovalent host-guest interactions. For both interior and exterior binding of a benzylphosphonium guest in aqueous solution, protiated guests are found to bind more strongly to host 1 (K(H)/K(D) > 1) and the preferred association of protiated guests is driven by enthalpy and opposed by entropy. Deuteration of guest methyl and benzyl C-H bonds results in a larger EIE than deuteration of guest aromatic C-H bonds. The observed EIEs can be well explained by considering changes in guest vibrational force constants and zero-point energies. DFT calculations further confirm the origins of these EIEs and suggest that changes in low-frequency guest C-H/D vibrational motions (bends, wags, etc.) are primarily responsible for the observed EIEs.  相似文献   

9.
The supramolecular host assembly [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) encapsulates cationic guest molecules within its hydrophobic cavity and catalyzes a variety of chemical transformations within its confined interior space. Despite the well-defined structure, the host ligand framework and interior cavity are very flexible and 1 can accommodate a wide range of guest shapes and sizes. These observations raise questions about the steric effects of confinement within 1 and how encapsulation fundamentally changes the motions of guest molecules. Here we examine the motional dynamics (guest bond rotation and tumbling) of encapsulated guest molecules to probe the steric consequences of encapsulation within host 1. Encapsulation is found to increase the Ph-CH(2) bond rotational barrier for ortho-substituted benzyl phosphonium guest molecules by 3 to 6 kcal/mol, and the barrier is found to depend on both guest size and shape. The tumbling dynamics of guests encapsulated in 1 were also investigated, and here it was found that longer, more prolate-shaped guest molecules tumble more slowly in the host cavity than larger but more spherical guest molecules. The prolate guests reduce the host symmetry from T to C(1) in solution at low temperatures, and the distortion of the host framework that is in part responsible for this symmetry reduction is observed directly in the solid state. Analysis of guest motional dynamics is a powerful method for interrogating host structure and fundamental host-guest interactions.  相似文献   

10.
An effective and novel approach to obtaining electrorheological particles with high performance through the formation of host-guest complexes has been achieved. The significant preponderance of the host-guest complex formation is that the host structure can be controlled easily by adding different guests. Based on this point, six supramolecular complexes of beta-cyclodextrin cross-linking polymer with salicylic acid (beta-CDP-1), 5-chlorosalicylic acid (beta-CDP-2), 3,5-dichlorosalicylic acid (beta-CDP-3), 5-nitrosalicylic acid (beta-CDP-4), 3,5-dinitrosalicylic acid (beta-CDP-5), or 3-hydroxy-2-naphthoic acid (beta-CDP-6) particles were synthesized. The electrorheological yield stresses of the suspensions of these particles in silicone oil have been investigated under DC electric fields. It was found that the yield stress of the typical beta-CDP-1 ER fluid was 5.6 kPa in 4 kV/mm, which is much higher than that of pure beta-cyclodextrin polymer (beta-CDP), that of pure salicylic acid as well as that of the mixture of the host with the guest. It is clearly indicated that the formation of supramolecular complexes between beta-CDP and salicylic acid can enhance the ER properties of the host. The similar results for other supramolecular complexes with different guests have also been obtained under the same DC electric fields. The yield stress of supramolecular complexes is strongly affected by the structure of guests. Among the six investigated guests, 3-hydroxy-2-naphthoic acid gave the highest ER property having a yield stress of 9.8 kPa under 4 kV/mm DC while cross-linked with beta-CDP to form beta-CDP-6. The yield stress of beta-CDP-6 was significantly increased by 72% in comparison with that of the pure beta-CDP. However, the yield stress of beta-CDP-1-5 slightly increased by 34-41% as compared with that of the pure beta-CDP. The achieved results indicate that the ER effect of host-guest complexes can be greatly affected by the changes of the tremendous guest structure, whereas the slight guest structural transposition, such as altering different groups of a guest, can only obtain the adjacent electrorheological behavior. The dielectric properties of these host-guest complexes also proved that the ER effect can be affected by the properties of guest.  相似文献   

11.
Guest exchange in an M(4)L(6) supramolecular assembly was previously demonstrated to proceed through a nonrupture mechanism in which guests squeeze through apertures in the host structure and not through larger portals created by partial assembly dissociation. Focusing on the [Ga(4)L(6)](12-) assembly [L = 1,5-bis(2',3'-dihydroxybenzamido)naphthalene], the host-guest kinetic behavior of this supramolecular capsule is defined. Guest self-exchange rates at varied temperatures and pressures were measured to determine activation parameters, revealing negative DeltaS and positive DeltaV values [PEt(4)(+): DeltaH = 74(3) kJ mol(-1), DeltaS = -46(6) J mol(-1) K(-1), k(298) = 0.003 s(-)); NEt(4)(+): DeltaH = 69(2) kJ mol(-1), DeltaS = -52(5) J mol(-1) K(-1), k(298) = 0.009 s(-1); NMe(2)Pr(2)(+): DeltaH = 52(2) kJ mol(-1), DeltaS = -56(7) J mol(-1) K(-1), DeltaV = +13(1) cm(3) mol(-1), k(298) = 4.4 s(-1); NPr(4)(+): DeltaH = 42(1) kJ mol(-1), DeltaS = -102(4) J mol(-1) K(-1), DeltaV = +31(2) cm(3) mol(-1), k(298) = 1.4 s(-1)]. In PEt(4)(+) for NEt(4)(+) exchange reactions, egress of the initial guest (G1) is found to be rate determining, with increasing G1 and G2 (the displacing guest) concentrations inhibiting guest exchange. This inhibition is explained by the decreased flexibility of the host imparted by exterior, or exohedral, guest interactions by both the G1 and G2 guests. Blocking the exohedral host sites with high concentrations of the smaller NMe(4)(+) cation (a weak endohedral guest) enhances PEt(4)(+) for NEt(4)(+) guest exchange rates. Finally, guest displacement reactions also demonstrate the sensitivity of guest exchange to thermodynamic endohedral guest binding affinities. When the initial guest (G1) has a weaker affinity for the host, G2 concentration dependence is observed in addition to dependence on the G2 binding strength.  相似文献   

12.
Competitive recrystallizations of cholic acid (CA) from 1:1 binary mixtures of seven mono-substituted benzenes are demonstrated. The order of preference for guests to be incorporated into the cholic acid crystals are as follows: benzene, toluene > n-amylbenzene, n-hexylbenzene > ethylbenzene, n-propylbenzene, n-butylbenzene. These seven compounds afford bilayer type inclusion crystals that are classified into four types based on the host frameworks and host-guest stoichiometries. The order of selective enclathration corresponds to the four types as follows: 1:1 alpha G > 2:1 alpha G > 1:1 beta T or 2:1 alpha T. The preference for the alpha G type was also confirmed by investigating the host frameworks of the crystals obtained from binary mixtures. The dependence of the selectivity on the different types of CA crystals can be understood in terms of the fit of the guest molecule in the host cavity.  相似文献   

13.
乙二胺桥联环糊精二聚体的多重识别研究   总被引:1,自引:1,他引:1  
本文合成了由两个乙二胺分子桥联的β-环糊精二聚体(1)。在碱性溶液中1与二价铜离子形成稳定的配合物(2), 根据客体分子被包合前后主、客体质子化学位移的变化研究了水溶液中三个主体分子: β-环糊精、1和2分别与对、间和邻氯苯酚及其钠盐的包合反应。通过比较主-客体包合物生成常数的大小可以推断2与有机阴离子客体之间存在多重识别作用。  相似文献   

14.
基于柱[5]芳烃主客体包结构筑分子响应型超分子水凝胶   总被引:1,自引:0,他引:1  
主客体相互作用是在水溶液中与大环主体分子形成稳定的包结物的理想驱动力.以功能化的苯并咪唑衍生物为客体(M),水溶性柱[5]芳烃为主体构建了一种分子响应型超分子水凝胶.通过1H NMR, 2D NOESY和扫描电子显微镜(SEM)研究了水凝胶的成凝胶机理.有趣的是,主客体包结作用、柱[5]芳烃间有序的"外腔"π-π相互作用和分层堆积对于获得超分子水凝胶是必不可少的,非共价键相互作用的动态可逆性使凝胶体系对温度变化/化学刺激产生响应.此外,加入竞争性客体己二腈(ADN)/百草枯(PQ)后,柱[5]芳烃基水凝胶可转化为溶胶.因此,该超分子水凝胶可以选择性识别有机分子.  相似文献   

15.
Two guest-free polymorphs and two inclusion compounds of the macrocyclic title complex [NiL] have been isolated and characterized with single-crystal and/or powder XRD, solid-state (13)C NMR, and other methods. The inclusion compound with methylene chloride, [NiL](CH(2)Cl(2)), is stable in air and thermally stable up to approximately 128 degrees C. Its crystal structure is consistent with van der Waals packing of the host [NiL] and guest CH(2)Cl(2) molecules. The host complex has square-planar coordination of the nickel(II) center with four nitrogen atoms of the macrocycle with an average Ni-N distance of 1.86 A. The molecule has a saddle-shaped conformation with the guest molecule located between one phenylene and two phenyl rings of the host molecule. Isostructural compounds with chloroform and 2-chloropropane form only as mixtures along with a guest-free host polymorph. The inclusion compound with C(60) has a composition 3[NiL]*(C(60))*2(CS(2)) and here also the crystal structure is consistent with a van der Waals type of packing. Three crystallographically inequivalent [NiL] molecules have geometries similar to that in the inclusion compound with methylene chloride. The concave surfaces of the complex molecules form a spherical cavity for the C(60) molecule. At -100 degrees C the C(60) molecule is disordered over two orientations centered at the same site. (13)C NMR studies at room temperature show that the C(60) molecule is undergoing rapid pseudo-isotropic rotation. The stability and other properties of the title and related complexes are discussed.  相似文献   

16.
17.
Molecular receptors, consisting of either two parallel cofacially disposed terpyridyl-Pd-Cl+ or terpyridyl-Pt-Cl+ units, are described. Concerted rotation of these units about the molecular spacer can alter their separation between 6.4 and 7.2 A to accommodate the dimensions of molecular guests. Neutral and anionic planar complexes of platinum(II) were investigated as guests to determine if metal-metal interaction between the host and guest metals could stabilize host-guest association. With a neutral guest, it was found that host-guest formation is signaled by a color change from light yellow to deep red. For one of the anionic guests, a visible absorption band appears upon host-guest formation with the platinum receptor that is ascribed to transitions associated with a Pt-Pt interaction. The association constants found for the neutral guest with the palladium and platinum receptors are large, suggesting that metal-metal interaction contributes to the molecular recognition. The structures of the host-(neutral)guest complexes in solution have been determined by 1H NOESY spectra. A crystal structure of the platinum host-(neutral)guest complex is the same as that found in solution and confirms the presence of a Pt-Pt interaction. Temperature-dependent (195)Pt NMR spectra in solution provide a quantitative estimate of the conformational interconversions of the free platinum receptor.  相似文献   

18.
n-Heptane/urea is an aperiodic inclusion compound in which the ratio of host and guest repeats along the channel axis is very close to unity and is found to have a constant value (0.981) from 280 K to 90 K. Below 280 K, two phase transitions are observed. The first (T(c1) = 145 K) is a ferroelastic phase transition that generates superstructure reflections for the host while leaving the guest with 1D order. The second (T(c2) = 130 K) is a "phase ordering" transition to a four-dimensional structure (P2(1)11(0βγ)) with pronounced host-guest intermodulation and a temperature dependent phase shift between guests in adjacent channels.  相似文献   

19.
合成和表征了4个碳链长度不同二溴化1,n-亚烷基-二-2-甲基吡啶(客体,n=6,8,10,12),利用1H NMR技术、热重分析及紫外吸收光谱法考察了这些客体与七、八元瓜环(主体)的相互作用,以及形成的主客体包结物的结构特征.研究结果表明4个客体与七、八元瓜环形成不同的主客体包合物.七元瓜环可穿梭在线性客体分子上形成类轮烷型或哑铃型主客体包合物;而由于具有较大的空腔,八元瓜环可包容弯曲状的整个客体分子.  相似文献   

20.
The guest dynamics and thermal behavior occurring in the cages of clathrate hydrates appear to be too complex to be clearly understood through various structural and spectroscopic approaches, even for the well-known structures of sI, sII, and sH. Neutron diffraction studies have recently been carried out to clarify the special role of guests in expanding the host water lattices and have contributed to revealing the influence factors on thermal expansivity. Through this letter we attempt to address three noteworthy features occurring in guest inclusion: (1) the effect of guest dimension on host water lattice expansion; (2) the effect of thermal history on host water lattice expansion; and (3) the effect of coherent/incoherent scattering cross sections on guest thermal patterns. The diatomic guests of H 2, D 2, N 2, and O 2 have been selected for study, and their size and mass dependence on the degree of lattice expansion have been examined, and four sII clathrate hydrates with tetrahydrofuran (THF) have been synthesized in order to determine their neutron powder diffraction patterns. After thermal cycling, the THF + H 2 clathrate hydrate is observed to exhibit an irreversible plastic deformation-like pattern, implying that the expanded lattices fail to recover the original state by contraction. The host-water cage dimension after degassing the guest molecules remains as it was expanded, and thus host-guest as well as guest-guest interactions will be altered if guest uptake reoccurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号