首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The low-temperature limiting value of the Grüneisen parameter for low-frequency phonons and the density dependence of the thermal conductivity (Bridgman parameter) of low-density amorphous (LDA) ice, high-density amorphous (HDA) ice, hexagonal ice Ih, and cubic ice Ic were calculated from high-pressure sound velocity and thermal conductivity measurements, yielding negative values for all states except HDA ice. LDA ice is the first amorphous state to exhibit a negative Bridgman parameter, and negative Grüneisen parameters are relatively unusual. Since Ih, Ic, and LDA ice all transform to HDA upon pressurization at low temperatures and share the unusual feature of negative Grüneisen parameters, this seems to be a prerequisite for pressure induced amorphization. We estimate that the Grüneisen parameter increases at the ice Ih to XI transition, and may become positive in ice XI, which indicates that proton-ordered ice XI does not amorphize like ice Ih on pressurization.  相似文献   

2.
3.
Model structures have been created for ice Ih and for low density (LDA), high density (HDA), and very high density (VHDA) amorphous ices using the procedure for determining the equilibrium configurations of molecules in amorphous phases. The chemical potentials of these ices were calculated for wide ranges of temperature and pressure. The curves of equilibrium phase transitions have been plotted. It is shown that at high pressures, VHDA ice is more stable than Ih, while HDA ice is metastable with respect to VHDA over the whole range of pressures and temperatures. These calculations provide an explanation to the experimentally observed transition of HDA into a higher density phase (VHDA) during isobaric heating.  相似文献   

4.
Electronic structures of hexagonal ice (ice Ih), high-density amorphous ice (HDA), and very high-density amorphous ice (VHDA) are investigated using ab initio density functional theory (DFT) at 77 K under a pressure of 0.1 MPa, focusing on band structure, density of states (DOS), partial density of states (PDOS), and electron density. It is found that the integration intensity of the O-2p bonding band in HDA is 1.53 eV wider than that in the VHDA. Because more 2p electrons in HDA participate the 2p-1s hybridization of O-H. The classical molecular dynamics (MD) method has further been carried out to analyze the hydrogen bond network of HDA and VHDA with larger numbers of water molecules under the same temperature, pressure, and boundary conditions used as those during the DFT calculation. MD results show that there exists some water molecules with five hydrogen bonds in both HDA (4.1 +/- 0.1%) and VHDA (2.8 +/- 0.1%), as compared with the LDA, being consistent with the integration intensity results of PDOS. This result can be used to interpret the physical nature of the similar transition temperature of HDA and VHDA to LDA with different heating rates.  相似文献   

5.
We report results of molecular dynamics simulations of amorphous ice for pressures up to 22.5 kbar. The high-density amorphous ice (HDA) as prepared by pressure-induced amorphization of I(h) ice at T=80 K is annealed to T=170 K at various pressures to allow for relaxation. Upon increase of pressure, relaxed amorphous ice undergoes a pronounced change of structure, ranging from the low-density amorphous ice at p=0, through a continuum of HDA states to the limiting very high-density amorphous ice (VHDA) regime above 10 kbar. The main part of the overall structural change takes place within the HDA megabasin, which includes a variety of structures with quite different local and medium-range order as well as network topology and spans a broad range of densities. The VHDA represents the limit to densification by adapting the hydrogen-bonded network topology, without creating interpenetrating networks. The connection between structure and metastability of various forms upon decompression and heating is studied and discussed. We also discuss the analogy with amorphous and crystalline silica. Finally, some conclusions concerning the relation between amorphous ice and supercooled water are drawn.  相似文献   

6.
In situ Raman spectra of transformations of H2O as functions of pressure and temperature have been measured starting from high-density amorphous ice (HDA). Changes above Tx, the crystallization temperature of HDA, were observed. The spectra provide evidence for an abrupt, first-order-like, structural change that appears to be distinct from those associated with the transformation between low-density amorphous ice (LDA) and HDA. In separate experiments, in situ Raman spectra of ice XII transformed from HDA have been measured at various P-T regions, in order to improve the understanding of the stability limits of ice XII. The spectra of ices VI and XII differ in shape, but the vibrational frequencies are very close in the same P-T regimes. A metastable phase of ice found to form within the stability field of ice VI appears to be distinct from ice XII.  相似文献   

7.
Transformations of water's high density amorph (HDA) to low density amorph (LDA) and of LDA's to cubic ice (Ic) have been studied by in situ thermal conductivity kappa measurements at high pressures. The HDA to LDA transformation is unobservable at p of 0.07 GPa, indicating that, for a fixed heating rate, an increase in pressure increases the temperature of HDA to LDA transformation and decreases that of LDA to ice Ic, causing thereby the two transformations to merge, and HDA appears to convert directly to ice Ic. Thus either LDA forms but converts extremely rapidly to ice Ic, or LDA does not form. At a fixed p and T, in the range of pressure amorphization of hexagonal ice, kappa continues to decrease with time. Therefore, the amorphization of ice Ih is kinetically controlled. When HDA at 1 GPa was heated from 130 to 157 K and densified to very HDA, its kappa increased by 3%. Our findings and a scrutiny of earlier reports show that a reversible transition between HDA and LDA does not occur at approximately 135 K and approximately 0.2 GPa. Since there is no unique HDA, it is difficult to justify the conjecture for a second critical point for water.  相似文献   

8.
We present results of classical trajectory calculations on the sticking of hyperthermal CO to the basal plane (0001) face of crystalline ice Ih and to the surface of amorphous ice Ia. The calculations were performed for normal incidence at a surface temperature Ts = 90 K for ice Ia, and at Ts = 90 and 150 K for ice Ih. For both surfaces, the sticking probability can be fitted to a simple exponentially decaying function of the incidence energy, Ei: Ps = 1.0e(-Ei(kJ/mol)/90(kJ/mol)) at Ts = 90 K. The energy transfer from the impinging molecule to the crystalline and the amorphous surface is found to be quite efficient, in agreement with the results of molecular beam experiments on the scattering of the similar molecule, N2, from crystalline and amorphous ice. However, the energy transfer is less efficient for amorphous than for crystalline ice. Our calculations predict that the sticking probability decreases with Ts for CO scattering from crystalline ice, as the energy transfer from the impinging molecule to the warmer surfaces becomes less efficient. At high Ei (up to 193 kJ/mol), no surface penetration occurs in the case of crystalline ice. However, for CO colliding with the amorphous surface, a penetrating trajectory was observed to occur into a large water pore. The molecular dynamics calculations predict that the average potential energy of CO adsorbed to ice Ih is -10.1 +/- 0.2 and -8.4 +/- 0.2 kJ/mol for CO adsorbed to ice Ia. These values are in agreement with previous experimental and theoretical data. The distribution of the potential energy of CO adsorbed to ice Ia was found to be wider (with a standard deviation sigma of 2.4 kJ/mol) than that of CO interacting with ice Ih (sigma = 2.0 kJ/mol). In collisions with ice Ia, the CO molecules scatter at larger angles and over a wider distribution of angles than in collisions with ice Ih.  相似文献   

9.
In this work we study through computer simulations the three known forms of amorphous ice, namely, the low density (LDA), the high density (HDA), and the very high density (VHDA) amorphous ices, at various pressures and temperatures. Adopting the TIP4P model, we are able to reproduce these three forms by following experiment-like procedures. Those systems are characterized from thermodynamic and structural points of view, in particular through an insightful analysis of the behavior of the second-shell neighbors in the various stages of the simulations. The distance-ranked neighbors are found to be the relevant markers of the differentiation mechanisms of the three forms, since their response to pressure induces specific distortions of the orientational correlations. We show that LDA, HDA, and VHDA are disordered forms whose local structures tend to a single tetrahedral network, to an ice-VII-like arrangement, and to a random-close-packed simple liquid-like structure, respectively. Despite the major structural deformations induced by pressure, the hydrogen bonds are still present in each of those forms, even though deformations of the tetrahedral angles are necessary to adapt to the denser structures.  相似文献   

10.
Aqueous solutions are widely explained by the hydration or the bound waterfree water notion. Amorphous polymorphism (polyamorphism) in pure water, which is presently under vigorous discussion, may provide a different view over the solutions. Here, I changed pressure, P, temperature, T, and concentration, C, of emulsified LiCl-H2O solutions and studied their freezing by detecting its heat evolution. It was experimentally indicated that the homogeneous nucleation of low-density crystalline ice I (phase Ih or Ic), in pure water and in solutions, connects to the polyamorphic transition of high-density amorphous ice (HDA) to low-density amorphous ice (LDA). Thus, the polyamorphism of water relates to the phase behavior of aqueous solution. In accordance with the recent simulation result, the nucleation was thought to occur in two stages: the appearance of the LDA-like state and the crystallization. Usefulness of the polyamorphic point of view about the solutions was seen.  相似文献   

11.
With the purpose of clarifying a number of points raised in the experimental literature, we investigate by molecular dynamics simulation the thermodynamics, the structure and the vibrational properties of vapor-deposited amorphous ice (ASW) as well as the phase transformations experienced by crystalline and vitreous ice under ion bombardment. Concerning ASW, we have shown that by changing the conditions of the deposition process, it is possible to form either a nonmicroporous amorphous deposit whose density (approximately 1.0 g/cm3) is essentially invariant with the temperature of deposition, or a microporous sample whose density varies drastically upon temperature annealing. We find that ASW is energetically different from glassy water except at the glass transition temperature and above. Moreover, the molecular dynamics simulation shows no evidence for the formation of a high-density phase when depositing water molecules at very low temperature. In order to model the processing of interstellar ices by cosmic ray protons and heavy ions coming from the magnetospheric radiation environment around the giant planets, we bombarded samples of vitreous ice and cubic ice with 35 eV water molecules. After irradiation the recovered samples were found to be densified, the lower the temperature, the higher the density of the recovered sample. The analysis of the structure and vibrational properties of this new high-density phase of amorphous ice shows a close relationship with those of high-density amorphous ice obtained by pressure-induced amorphization.  相似文献   

12.
The theoretical study of off-resonant fifth-order two-dimensional (2D)-Raman spectroscopy is made to analyze the intermolecular dynamics of liquid and solid water. The 2D-Raman spectroscopy is susceptible to the nonlinear anharmonic dynamics and local hydrogen bond structure in water. It is found that the distinct 2D-Raman response appears as the negative signal near the t(2) axis. The origin of this negative signal for t(2)<15 fs is from the nonlinear polarizability in the librational motions, whereas that for 30 fs相似文献   

13.
The exact nature of the relationship between high-density (HDA) and very-high-density (VHDA) amorphous ice is unknown at present. Here we review the relation between HDA and VHDA, concentrating on experimental aspects and discuss these with respect to the relation between low-density amorphous ice (LDA) and HDA. On compressing LDA at 125 K up to 1.5 GPa, two distinct density steps are observable in the pressure-density curves which correspond to the LDA --> HDA and HDA --> VHDA conversion. This stepwise formation process LDA --> HDA --> VHDA at 125 K is the first unambiguous observation of a stepwise amorphous-amorphous-amorphous transformation sequence. Density values of amorphous ice obtained in situ between 0.3 and 1.9 GPa on isobaric heating up to the temperatures of crystallization show a pronounced change of slope at ca. 0.8 GPa which could indicate formation of a distinct phase. We infer that the relation between HDA and VHDA is very similar to that between LDA and HDA except for a higher activation barrier between the former. We further discuss the two options of thermodynamic phase transition versus kinetic densification for the HDA --> VHDA conversion.  相似文献   

14.
Monte Carlo computer simulations of ice VII and ice VIII phases have been undertaken using the four-point transferable intermolecular potential model of water. By following thermodynamic paths similar to those used experimentally, ice is decompressed resulting in an amorphous phase. These phases are compared to the high density amorphous phase formed upon compression of ice Ih and are found to have very similar structures. By cooling liquid water along the water/Ih melting line a high density amorphous phase was also generated.  相似文献   

15.
Many acronyms are used in the literature for describing different kinds of amorphous ice, mainly because many different preparation routes and many different sample histories need to be distinguished. We here introduce these amorphous ices and discuss the question of how many of these forms are of relevance in the context of polyamorphism. We employ the criterion of reversible transitions between amorphous "states" in finite intervals of pressure and temperature to discriminate between independent metastable amorphous "states" and between "substates" of the same amorphous "state". We argue that the experimental evidence suggests we should consider there to be three polyamorphic "states" of ice, namely low-(LDA), high-(HDA) and very high-density amorphous ice (VHDA). In addition to the realization of reversible transitions between them, they differ in terms of their properties, e.g., compressibility, or number of "interstitial" water molecules. Thus they cannot be regarded as structurally relaxed variants of each other and so we suggest considering them as three distinct megabasins in an energy landscape visualization.  相似文献   

16.
We present the results of classical dynamics calculations performed to study the photodissociation of water in crystalline and amorphous ice surfaces at a surface temperature of 10 K. A modified form of a recently developed potential model for the photodissociation of a water molecule in ice [S. Andersson et al., Chem. Phys. Lett. 408, 415 (2005)] is used. Dissociation in the top six monolayers is considered. Desorption of H(2)O has a low probability (less than 0.5% yield per absorbed photon) for both types of ice. The final outcome strongly depends on the original position of the photodissociated molecule. For molecules in the first bilayer of crystalline ice and the corresponding layers in amorphous ice, desorption of H atoms dominates. In the second bilayer H atom desorption, trapping of the H and OH fragments in the ice, and recombination of H and OH are of roughly equal importance. Deeper into the ice H atom desorption becomes less important and trapping and recombination dominate. Motion of the photofragments is somewhat more restricted in amorphous ice. The distribution of distances traveled by H atoms in the ice peaks at 6-7 Angstroms with a tail going to about 60 Angstroms for both types of ice. The mobility of OH radicals is low within the ice with most probable distances traveled of 2 and 1 Angstrom for crystalline and amorphous ices, respectively. OH is, however, quite mobile on top of the surface, where it has been found to travel more than 80 Angstroms. Simulated absorption spectra of crystalline ice, amorphous ice, and liquid water are found to be in very good agreement with the experiments. The outcomes of photodissociation in crystalline and amorphous ices are overall similar, but with some intriguing differences in detail. The probability of H atoms desorbing is 40% higher from amorphous than from crystalline ice and the kinetic-energy distribution of the H atoms is on average 30% hotter for amorphous ice. In contrast, the probability of desorption of OH radicals from crystalline ice is much higher than that from amorphous ice.  相似文献   

17.
We have made high density amorphous ice (HDA) by the pressure-induced amorphization of hexagonal ice at 77 K and measured the volume change on isobaric heating in a pressure range between 0.1 and 1.5 GPa. The volume of HDA on heating below ~0.35?GPa increases, while the volume of HDA on heating above ~0.35?GPa decreases. The polarized OH-stretching Raman spectra of the relaxed HDAs are compared with that of the unannealed HDA. The relaxed HDAs are prepared at 0.2 GPa at 130 K and 1.5 GPa at 160 K. It is found that the relatively strong totally symmetric OH-stretching vibration mode around 3100?cm(-1) exists in the depolarized reduced Raman spectrum χ(VH)(") of the unannealed HDA and that its intensity rapidly decreases by relaxation. The χ(VH)(") profiles of the relaxed HDA are similar to those of liquid water. These results indicate that the HDA reaches a nearly equilibrium state by annealing and the intrinsic state of HDA relates to a liquid state. The pressure-volume curve of the relaxed HDA at 140 K seems to be smooth in the pressure range below 1.5 GPa.  相似文献   

18.
19.
We compute thermal transport coefficients for liquid and glassy water in terms of the vibrations of the quenched liquid. The thermal conductivity and thermal diffusivity are computed for H(2)O and D(2)O at densities from 0.93 to 1.2 g cm(-3). The computed thermal diffusivity of liquid water is in reasonable agreement with measured values and is found to increase with increasing temperature due largely to the thermal accessibility of delocalized librational modes. The influence of structure and density on the thermal conductivity of amorphous ices is investigated. The calculations reveal that density alone is unable to explain the measured thermal conductivity of amorphous ices, particularly low-density amorphous ices, for which the thermal conductivity decreases with increasing temperature near 100 K. To investigate the influence of structure on thermal transport in amorphous ices we have computed the thermal transport coefficients for low-density amorphous ices prepared in two different ways, one formed by quenching the liquid at 0.93 g cm(-3) and the other by distortion of cubic ice at the same density. The computed thermal conductivity of the latter is higher, but the structures of both forms are too disordered for the thermal conductivity to exhibit the unusual variation observed experimentally.  相似文献   

20.
The behavior of structures of H2O crystalline ices Ih, Ic, XI, VII, VIII, VI is studied in molecular dynamics experiment using the potential offered by Poltev and Malenkov. The behavior of the system consisting of one of the two identical interpenetrating, but without any common hydrogen bonds, water frameworks comprising the ice VI structure is also simulated. As a result of simulations, the ice VII structure has collapsed, whereas other systems proved to be stable. The reasons of instability of the ice VII and previously studied ice IV structures in molecular dynamics experiments are discussed. Based on the simulation results of the above-mentioned ices and previous simulation of ices II, III, IX, IV, and XII, the general regularities of dynamic properties of water molecules in crystalline water ices are formulated. Unreliability of results obtained by molecular dynamics in the investigation of self-organizing processes in aqueous systems is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号