首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Du J  Perera R  Dawson JH 《Inorganic chemistry》2011,50(4):1242-1249
His93Gly sperm whale myoglobin (H93G Mb) has the proximal histidine ligand removed to create a cavity for exogenous ligand binding, providing a remarkably versatile template for the preparation of model heme complexes. The investigation of model heme adducts is an important way to probe the relationship between coordination structure and catalytic function in heme enzymes. In this study, we have successfully generated and spectroscopically characterized the H93G Mb cavity mutant ligated with less common alkylamine ligands (models for Lys or the amine group of N-terminal amino acids) in numerous heme iron states. All complexes have been characterized by electronic absorption and magnetic circular dichroism spectroscopy in comparison with data for parallel imidazole-ligated H93G heme iron moieties. This is the first systematic spectral study of models for alkylamine- or terminal amine-ligated heme centers in proteins. High-spin mono- and low-spin bis-amine-ligated ferrous and ferric H93G Mb adducts have been prepared together with mixed-ligand ferric heme complexes with alkylamine trans to nitrite or imidazole as heme coordination models for cytochrome c nitrite reductase or cytochrome f, respectively. Six-coordinate ferrous H93G Mb derivatives with CO, NO, and O(2) trans to the alkylamine have also been successfully formed, the latter for the first time. Finally, a novel high-valent ferryl species has been generated. The data in this study represent the first thorough investigation of the spectroscopic properties of alkylamine-ligated heme iron systems as models for naturally occurring heme proteins ligated by Lys or terminal amines.  相似文献   

2.
Electron harvesting bacteria are key targets to develop microbial electrosynthesis technologies, which are valid alternatives for the production of value-added compounds without utilization of fossil fuels. Geobacter sulfurreducens, that is capable of donating and accepting electrons from electrodes, is one of the most promising electroactive bacteria. Its electron transfer mechanisms to electrodes have been progressively elucidated, however the electron harvesting pathways are still poorly understood. Previous studies showed that the periplasmic cytochromes PccH and GSU2515 are overexpressed in current-consuming G. sulfurreducens biofilms. PccH was characterized, though no putative partners have been identified. In this work, GSU2515 was characterized by complementary biophysical techniques and in silico simulations using the AlphaFold neural network. GSU2515 is a low-spin monoheme cytochrome with a disordered N-terminal region and an α-helical C-terminal domain harboring the heme group. The cytochrome undergoes a redox-linked heme axial ligand switch, with Met91 and His94 as distal axial ligands in the reduced and oxidized states, respectively. The reduction potential of the cytochrome is negative and modulated by the pH in the physiological range: −78 mV at pH 6 and −113 mV at pH 7. Such pH-dependence coupled to the redox-linked switch of the axial ligand allows the cytochrome to drive a proton-coupled electron transfer step that is crucial to confer directionality to the respiratory chain. Biomolecular interactions and electron transfer experiments indicated that GSU2515 and PccH form a redox complex. Overall, the data obtained highlight for the first time how periplasmic proteins bridge the electron transfer between the outer and inner membrane in the electron harvesting pathways of G. sulfurreducens.  相似文献   

3.
Ferric and ferrous hemes, such as those present in electron transfer proteins, often have low-lying spin states that are very close in energy. To explore the relationship between spin state, geometry, and cytochrome electron transfer, we investigate, using density functional theory, the relative energies, electronic structure, and optimized geometries for a high- and low-spin ferric and ferrous heme model complex. Our model consists of an iron-porphyrin axially ligated by two imidazoles, which model the interaction of a heme with histidine residues. Using the B3LYP hybrid functional, we found that, in the ferric model heme complex, the doublet is lower in energy than the sextet by 8.4 kcal/mol and the singlet ferrous heme is 6.7 kcal/mol more stable than the quintet. The difference between the high-spin ferric and ferrous model heme energies yields an adiabatic electron affinity (AEA) of 5.24 eV, and the low-spin AEA is 5.17 eV. Both values are large enough to ensure electron trapping, and electronic structure analysis indicates that the iron d(pi) orbital is involved in the electron transfer between hemes. M?ssbauer parameters calculated to verify the B3LYP electronic structure correlate very well with experimental values. Isotropic hyperfine coupling constants for the ligand nitrogen atoms were also evaluated. The optimized geometries of the ferric and ferrous hemes are consistent with structures from X-ray crystallography and reveal that the iron-imidazole distances are significantly longer in the high-spin hemes, which suggests that the protein environment, modeled here by the imidazoles, plays an important role in regulating the spin state. Iron-imidazole dissociation energies, force constants, and harmonic frequencies were calculated for the ferric and ferrous low-spin and high-spin hemes. In both the ferric and the ferrous cases, a single imidazole ligand is more easily dissociated from the high-spin hemes.  相似文献   

4.
We have recently reported that aquo and thioether complexes of the ferric cytochrome c heme peptide N-acetylmicroperoxidase-8 (FeIII-1) exhibit greater low-spin character than do the corresponding complexes of a synthetic, water-soluble, monohistidine-ligated heme peptide (FeIII-2; Cowley, A. B.; Lukat-Rodgers, G. S.; Rodgers, K. R.; Benson, D. R. Biochemistry 2004, 43, 1656-1666). Herein we report results of studies showing that weak-field ligands bearing a full (fluoride, chloride, hydroxide) or partial (phenoxide, thiocyanate) negative charge on the coordinating atom trigger dissociation of the axial His ligand in FeIII-2 but not in FeIII-1. We attribute the greater sensitivity of His ligation in FeIII-1 to weak-field anionic ligands than to weak-field neutral ligands to the following phenomena: (1) anionic ligands pull FeIII further from the mean plane of a porphyrin than do neutral ligands, which will have the effect of straining the His-Fe bond in FeIII-2, and (2) heme in FeIII-2 is likely to undergo a modest doming distortion following anion binding that will render the His-ligated side of the porphyrin concave, thereby increasing porphyrin/ligand steric interactions. We propose that ruffling of the heme in FeIII-1 is an important factor contributing to its ability to resist His dissociation by weak-field anions. First, ruffling should allow His to more closely approach the porphyrin than is possible in FeIII-2, thereby reducing bond strain following anion binding. Second, the ruffling deformation in FeIII-1, which is enforced by the double covalent heme-peptide linkage, will almost certainly prevent significant porphyrin doming.  相似文献   

5.
The tetraheme cytochrome c(554) (cyt c(554)) from Nitrosomonas europaea is believed to function as an electron-transfer protein from hydroxylamine oxidoreductase (HAO). We show here that cyt c(554) also has significant NO reductase activity. The protein contains one high-spin and three low-spin c-type hemes. HAO catalyzed reduction of the cyt c(554), ligand binding, intermolecular electron transfer, and kinetics of NO reduction by cyt c(554) have been investigated. We detect the formation of a NO-bound ferrous heme species in cyt c(554) by EPR and M?ssbauer spectroscopies during the HAO catalyzed oxidation of hydroxylamine, indicating that N-oxide intermediates produced from HAO readily bind to cyt c(554). In the half-reduced state of cyt c(554), we detect a spin interaction between the [FeNO](7) state of heme 2 and the low-spin ferric state of heme 4. We find that ferrous cyt c(554) will reduce NO at a rate greater than 16 s(-1), which is comparable to rates of other known NO reductases. Carbon monoxide or nitrite are shown not to bind to the reduced protein, and previous results indicate the reactions with O(2) are slow and that a variety of ligands will not bind in the oxidized state. Thus, the enzymatic site is highly selective for NO. The NO reductase activity of cyt c(554) may be important during ammonia oxidation in N. europaea at low oxygen concentrations to detoxify NO produced by reduction of nitrite or incomplete oxidation of hydroxylamine.  相似文献   

6.
《Chemistry & biology》1996,3(7):561-566
Background: The Rhizobial oxygen sensor FixL is a hemoprotein with kinase activity. On binding of strong-field ligands, a change of the ferrous or ferric heme iron from high to low spin reversibly inactivates the kinase. This spin-state change and other information on the heme pocket have been inferred from enzymatic assays, absorption spectra and mutagenesis studies. We set out to investigate the spin-state of the FixL heme and to identify the hyperfine-shifted heme-proton signals by NMR spectroscopy.Results: Using one-dimensional N MR we directly observed the high- and low-spin nature of the met- and cyanomet-FixL heme domain, respectively. We determined the hyperfine-shifted 1H-NMR signals of the heme and the proximal histidine by one- and two-dimensional spectroscopy and note the absence of distal histidine signals.Conclusions: These findings support the spin-state mechanism of FixL regulation. They establish that the site of heme coordination is a histidine residue and strongly suggest that a distal histidine is absent. With a majority of the heme resonances identified, one- and two-dimensional NMR techniques can be extended to provide structural and mechanistic information about the residues that line the heme pocket.  相似文献   

7.
Human cystathionine β-synthase (hCBS), a key enzyme in the trans-sulfuration pathway, catalyzes the condensation of serine with homocysteine to produce cystathionine. CBS from higher organisms is the only known protein that binds pyridoxal-5'-phosphate (PLP) and heme. Intriguingly, the function of the heme in hCBS has yet to be elucidated. Herein, we describe the characterization of a cobalt-substituted variant of hCBS (Co hCBS) in which CoPPIX replaces FePPIX (heme). Co(III) hCBS is a unique Co-substituted heme protein: the Co(III) ion is 6-coordinate, low-spin, diamagnetic, and bears a cysteine(thiolate) as one of its axial ligands. The peak positions and intensities of the electronic absorption and MCD spectra of Co(III) hCBS are distinct from those of previously Co-substituted heme proteins; TD-DFT calculations reveal that the unique features arise from the 6-coordinate Co bound axially by cysteine(thiolate) and a neutral donor, presumably histidine. Reactivity of Co(III) hCBS with HgCl(2) is consistent with a loss of the cysteine(thiolate) ligand. Co(III) hCBS is slowly reduced to Co(II) hCBS, which contains a 5-coordinate, low-spin, S = 1/2 Co-porphyrin that does not retain the cysteine(thiolate) ligand; this form of Co(II) hCBS binds NO((g)) but not CO((g)). Co(II) hCBS is reoxidized in the air to form a new Co(III) form, which does not contain a cysteine(thiolate) ligand. Canonical and alternative CBS assays suggest that maintaining the native heme ligation motif of wild-type Fe hCBS (Cys/His) is essential in maintaining maximal activity in Co hCBS. Correlation between the coordination structures and enzyme activity in both native Fe and Co-substituted proteins implicates a structural role for the heme in CBS.  相似文献   

8.
One of the difficulties in preparing accurate ambient-temperature model complexes for heme proteins, particularly in the ferric state, has been the generation of mixed-ligand adducts: complexes with different ligands on either side of the heme. The difference in the accessibility of the two sides of the heme in the H93G cavity mutant of myoglobin (Mb) provides a potential general solution to this problem. To demonstrate the versatility of H93G Mb for the preparation of heme protein models, numerous mixed-ligand adducts of ferrous, ferric, and ferryl imidazole-ligated H93G (H93G(Im) Mb) have been prepared. The complexes have been characterized by electronic absorption and magnetic circular dichroism (MCD) spectroscopy in comparison to analogous derivatives of wild type Mb. The starting ferric H93G(Im) Mb state spectroscopically resembles wild-type ferric Mb as expected for a complex containing a single imidazole in the proximal cavity and water bound on the distal side. Addition of a sixth ligand to ferric H93G(Im) Mb, whether charge neutral (imidazole) or anionic (cyanide and azide), results in formation of six-coordinate low-spin complexes with MCD characteristics similar to those of parallel derivatives of wild-type ferric Mb. Reduction of ferric H93G(Im) Mb and subsequent exposure to either CO, NO, or O2 produces ferrous complexes (deoxy, CO, NO, and O2) that consistently exhibit MCD spectra similar to the analogous ferrous species of wild-type ferrous Mb. Most interestingly, reaction of ferric H93G(Im) Mb with H2O2 results in the formation of a stable high-valent oxoferryl complex with MCD characteristics that are essentially identical to those of oxoferryl wild-type Mb. The generation of such a wide array of mixed-ligand heme complexes demonstrates the efficacy of the H93G Mb cavity mutant as a template for the preparation of heme protein model complexes.  相似文献   

9.
An idealized, water-soluble D(2)-symmetric diheme protein is constructed based on a mathematical parametrization of the backbone coordinates of the transmembrane diheme four-helix bundle in cytochrome bc(1). Each heme is coordinated by two His residues from diagonally apposed helices. In the model, the imidazole rings of the His ligands are held in a somewhat unusual perpendicular orientation as found in cytochrome bc(1), which is maintained by a second-shell hydrogen bond to a Thr side chain on a neighboring helix. The resulting peptide is unfolded in the apo state but assembles cooperatively upon binding to heme into a well-folded tetramer. Each tetramer binds two hemes with high affinity at low micromolar concentrations. The equilibrium reduction midpoint potential varies between -76 mV and -124 mV vs SHE in the reducing and oxidizing direction, respectively. The EPR spectrum of the ferric complex indicates the presence of a low-spin species, with a g(max) value of 3.35 comparable to those obtained for hemes b of cytochrome bc(1) (3.79 and 3.44). This provides strong support for the designed perpendicular orientation of the imidazole ligands. Moreover, NMR spectra show that the protein exists in solution in a unique conformation and is amenable to structural studies. This protein may provide a useful scaffold for determining how second-shell ligands affect the redox potential of the heme cofactor.  相似文献   

10.
We have developed an instrumental setup that uses transient absorption to monitor protein folding/unfolding processes following a laser-induced, ultrafast release of protons from o-nitrobenzaldehyde. The resulting increase in [H(+)], which can be more than 100 microM, is complete within a few nanoseconds. The increase in [H(+)] lowers the pH of the solution from neutrality to approximately 4 at the highest laser pulse energy used. Protein structural rearrangements can be followed by transient absorption, with kinetic monitoring over a broad time range (approximately 10 ns to 500 ms). Using this pH-jump/transient absorption technique, we have examined the dissociation kinetics of non-native axial heme ligands (either histidine His26 or His33) in GuHCl-unfolded Fe(III) cytochrome c (cyt c). Deligation of the non-native ligands following the acidic pH-jump occurs as a biexponential process with different pre-exponential factors. The pre-exponential factors markedly depend on the extent of the pH-jump, as expected from differences in the pK(a) values of His26 and His33. The two lifetimes were found to depend on temperature but were not functions of either the magnitude of the pH-jump or the pre-pulse pH of the solution. The activation energies of the deligation processes support the suggestion that GuHCl-unfolded cyt c structures with non-native histidine axial ligands represent kinetic traps in unfolding.  相似文献   

11.
The 1H and 13C chemical shifts for the heme methyls of low-spin, ferric sperm whale cyanometmyoglobin reconstituted with a variety of centrosymmetric and pseudocentrosymmetric hemins have been recorded and analyzed to shed light on the nature of heme-protein contacts, other than that of the axial His, that modulate the rhombic perturbation to the heme's in-plane electronic asymmetry. The very similar 1H dipolar shifts for heme pocket residues in all complexes yield essentially the same magnetic axes as in wild type, and the resultant dipolar shifts allow the direct determination of the heme methyl proton and 13C contact shifts in all complexes. It is demonstrated that, even when the magnetic axes and anisotropies are known, the intrinsic uncertainties in the orientational parameters lead to a sufficiently large uncertainty in dipolar shift that the methyl proton contact shifts are inherently significantly less reliable indicators of the unpaired electron spin distribution than the methyl 13C contact shifts. The pattern of the noninversion symmetry in 13C contact shifts in the centro- or pseudocentrosymmetric hemes is shown to correlate with the positions of aromatic rings of Phe43(CD1) and His97(FG3) parallel to, and in contact with, the heme. These results indicate that such pi-pi interactions significantly perturb the in-plane asymmetry of the heme pi spin distribution and cannot be ignored in a quantitative interpretation of the heme methyl 13C contact shifts in terms of the axial His orientation in b-type hemoproteins.  相似文献   

12.
Ferryl-oxo species have been recognized as a key oxidant in many heme and non-heme enzymes. Recently, less-characterized ferric-superoxo species have been found or suggested to be another electrophilic oxidant. Reactivity of several vital ferryl-oxo and ferric-superoxo model complexes was examined by DFT calculations. Reactivity is found to correlate well with thermodynamic driving force and can increase with higher electrophilicity of the oxidant. Reactivity of the ferric-superoxo oxidants generally is not "superior" to the ferryl-oxo ones. Compared to the high-spin non-heme ferric-superoxo, the lower reactivity of low-spin heme ferric-superoxo, seldom utilized in nature, can be attributed to lower electrophilicity and more pronounced quenching of anti-ferromagnetic coupling between the ferric and superoxo parts. The present comparison should shed some light on mechanistic strategies in heme and non-heme enzymes and provide clues to rational design of ferric-superoxo oxidants.  相似文献   

13.
In heme-based sensor proteins, ligand binding to heme in a sensor domain induces conformational changes that eventually lead to changes in enzymatic activity of an associated catalytic domain. The bacterial oxygen sensor FixL is the best-studied example of these proteins and displays marked differences in dynamic behavior with respect to model globin proteins. We report a mid-IR study of the configuration and ultrafast dynamics of CO in the distal heme pocket site of the sensor PAS domain FixLH, employing a recently developed method that provides a unique combination of high spectral resolution and range and high sensitivity. Anisotropy measurements indicate that CO rotates toward the heme plane upon dissociation, as is the case in globins. Remarkably, CO bound to the heme iron is tilted by ~30° with respect to the heme normal, which contrasts to the situation in myoglobin and in present FixLH-CO X-ray crystal structure models. This implies protein-environment-induced strain on the ligand, which is possibly at the origin of a very rapid docking-site population in a single conformation. Our observations likely explain the unusually low affinity of FixL for CO that is at the origin of the weak ligand discrimination between CO and O(2). Moreover, we observe orders of magnitude faster vibrational relaxation of dissociated CO in FixL than in globins, implying strong interactions of the ligand with the distal heme pocket environment. Finally, in the R220H FixLH mutant protein, where CO is H-bonded to a distal histidine, we demonstrate that the H-bond is maintained during photolysis. Comparison with extensively studied globin proteins unveils a surprisingly rich variety in both structural and dynamic properties of the interaction of a diatomic ligand with the ubiquitous b-type heme-proximal histidine system in different distal pockets.  相似文献   

14.
The electronic structure of the 5-coordinate quantum-mechanically mixed-spin (sextet-quartet) heme center in cytochrome c' was investigated by electron nuclear double resonance (ENDOR), a technique not previously applied to this mixed-spin system. Cytochrome c' was obtained from overexpressing variants of Rhodobacter sphaeroides 2.4.3. ENDOR for this study was done at the g(//) = 2.00 extremum where single-crystal-like, well-resolved spectra prevail. The heme meso protons of cytochrome c' showed a contact interaction that implied spin delocalization arising from the heme (d(z)(2)) orbital enhanced by iron out-of-planarity. An exchangeable proton ENDOR feature appeared from the proximal His123 Ndelta hydrogen. This Ndelta hydrogen, which crystallographically has no hydrogen-bonding partner and thus belongs to a neutral imidazole, showed a larger hyperfine coupling than the corresponding hydrogen-bonded Ndelta proton from metmyoglobin. The unique residue Phe14 occludes binding of a sixth ligand in cytochrome c', and ENDOR from a proton of the functionally important Phe14 ring, approximately 3.3 A away from the heme iron, was detected. ENDOR of the nitrogen ligand hyperfine structure is a direct probe into the sigma-antibonding (d(z)(2)) and (d(x)(2)-d(y)(2)) orbitals whose energies alter the relative stability and admixture of sextet and quartet states and whose electronic details were thus elucidated. ENDOR frequencies showed for cytochrome c' larger hyperfine couplings to the histidine nitrogen and smaller hyperfine couplings to the heme nitrogens than for high-spin ferric hemes. Both of these findings followed from the mixed-spin ground state, which has less (d(x)(2)-d(y)(2)) character than have fully high-spin ferric heme systems.  相似文献   

15.
Hemophore HasA is a 19 kDa iron(III) hemoprotein that participates in the shuttling of heme to a specific membrane receptor. In HasA, heme iron has an original coordination environment with a His/Tyr pair as axial ligands. Recently developed two-dimensional protonless (13)C-detected experiments provide the sequence-specific assignment of all but three protein residues in the close proximity of the paramagnetic center, thus overcoming limitations due to the short relaxation times induced by the presence of the iron(III) center. Mono-dimensional (13)C and (15)N experiments tailored for the detection of paramagnetic signals allow the identification of resonances of the axial ligands. These experiments are used to characterize the conformational features and the electronic structure of the heme iron(III) environment. The good complementarity among (1)H-, (13)C-, and (15)N-detected experiments is highlighted. A thermal high-spin/low-spin equilibrium is observed and is related to a modulation of the strength of the coordination bond between the iron and the Tyr74 axial ligand. The key role of a neighboring residue, His82, for the stability of the axial coordination and its involvement in the heme delivery to the receptor is discussed.  相似文献   

16.
The solution 1H NMR spectrum of oxidized (met) mouse neuroglobin, metNgb, demonstrates that it is low-spin and hexacoordinate with strong spectral similarities to ferricytochrome b5. The axial ligands are identified as His(F8) and His(E7), with the latter exhibiting an unstrained Fe-His bond. The presence of two sets of resonances is shown to arise from equilibrium heme orientational isomers ( approximately 2:1). The ligation of cyanide is shown to be extraordinarily slow with a factor approximately 2 difference in rate for the two heme orientations. Not only is Ngb the first mamalian globin with equilibrium heme disorder, but the disorder also has additional functional consequences.  相似文献   

17.
An oxo-bridged ferric heme-copper(II) complex, obtained by thermal transformation of the corresponding peroxo-bridged complex, was reacted with an equimolar amount of H2O2 to regenerate the micro-peroxo complex by a ligand exchange from oxo to peroxo, without the formation of a ferryl-oxo species or heme degradation as are observed in general ferric heme-H2O2 reactions.  相似文献   

18.
Cytochrome c (Cyt c) is a heme protein involved in electron transfer and also in apoptosis. Its heme iron is bisaxially ligated to histidine and methionine side chains and both ferric and ferrous redox states are physiologically relevant, as well as a ligand exchange between internal residue and external diatomic molecule. The photodissociation of internal axial ligand was observed for several ferrous heme proteins including Cyt c, but no time-resolved studies have been reported on ferric Cyt c. To investigate how the oxidation state of the heme influences the primary photoprocesses, we performed a comprehensive comparative study on horse heart Cyt c by subpicosecond time-resolved resonance Raman and femtosecond transient absorption spectroscopy. We found that in ferric Cyt c, in contrast to ferrous Cyt c, the photodissociation of an internal ligand does not take place, and relaxation dynamics is dominated by vibrational cooling in the ground electronic state of the heme. The intermolecular vibrational energy transfer was found to proceed in a single phase with a temperature decay of approximately 7 ps in both ferric and ferrous Cyt c. For ferrous Cyt c, the instantaneous photodissociation of the methionine side chain from the heme iron is the dominant event, and its rebinding proceeds in two phases, with time constants of approximately 5 and approximately 16 ps. A mechanism of this process is discussed, and the difference in photoinduced coordination behavior between ferric and ferrous Cyt c is explained by an involvement of the excited electronic state coupled with conformational relaxation of the heme.  相似文献   

19.
Sperm whale myoglobin, an oxygen storage hemoprotein, was successfully reconstituted with the iron porphycene having two propionates, 2,7-diethyl-3,6,12,17-tetramethyl-13,16-bis(carboxyethyl)porphycenatoiron. The physicochemical properties and ligand bindings of the reconstituted myoglobin were investigated. The ferric reconstituted myoglobin shows the remarkable stability against acid denaturation and only a low-spin characteristic in its EPR spectrum. The Fe(III)/Fe(II) redox potential (-190 mV vs NHE) determined by the spectroelectrochemical measurements was much lower than that of the wild-type. These results can be attributed to the strong coordination of His93 to the porphycene iron, which is induced by the nature of the porphycene ring symmetry. The O2 affinity of the ferrous reconstituted myoglobin is 2600-fold higher than that of the wild-type, mainly due to the decrease in the O2 dissociation rate, whereas the CO affinity is not so significantly enhanced. As a result, the O2 affinity of the reconstituted myoglobin exceeds its CO affinity (M' = K(CO)/K(O2) < 1). The ligand binding studies on H64A mutants support the fact that the slow O2 dissociation of the reconstituted myoglobin is primarily caused by the stabilization of the Fe-O2 sigma-bonding. The IR spectra for the carbon monoxide (CO) complex of the reconstituted myoglobin suggest several structural and/or electrostatic conformations of the Fe-C-O bond, but this is not directly correlated with the CO dissociation rate. The high O2 affinity and the unique characteristics of the myoglobin with the iron porphycene indicate that reconstitution with a synthesized heme is a useful method not only to understand the physiological function of myoglobin but also to create a tailor-made function on the protein.  相似文献   

20.
Photolysis of ferrocytochrome c by 248 nm laser light in aqueous solution at pH 7 generates hydrated electrons (eaq-) by a monophotonic process with quantum yield phi = 0.034. Approximately three-quarters of the eaq- originate from the heme, which is converted from the ferrous to the ferric state in < 100 ns. The conformational changes associated with the change in the redox state of cytochrome c are either not detectable spectrophotometrically or complete in < 100 ns. Also, under conditions where ferrocytochrome c is stable but ferricytochrome c is unfolded (3 M guanidine, pH 7, 40 degrees C), photoionization of ferrocytochrome c generated ferricytochrome c with similar quantum yield. Under these conditions, the lifetime of native ferricytochrome c is 67 microseconds; it decays via two intermediates with lambda max > 410 nm, neither of which is the thermodynamically favored, unfolded form. These species are putatively identified as unfolding intermediates with nonnative iron ligands, similar to those found during folding of ferrocytochrome c. The results suggest that unfolding, like folding, proceeds by intrachain diffusion and ligand exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号