首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An adaptation of Kagan’s method for preparing 2-substituted ferrocenecarboxaldehydes has allowed us to directly prepare enantiopure (Sp)-2-chloromercurio-ferrocenecarboxaldehyde, (Sp)-3. Subsequent condensation of this aldehyde with (1R,2R)-(+)-1,2-diphenyl-1,2-ethanediamine ((R,R)-4) yielded a novel, enantiopure bis-cyclomercurated ferrocenylimine, (Sp,Sp,Rc,Rc)-N,N-bis(2-(chloromercurio)ferrocenylidene)-1,2-diphenylethane-1,2-diimine ((Sp,Sp,Rc,Rc)-5). In addition to the chiroptical data collected for both (Sp)-3 and (Sp,Sp,Rc,Rc)-5, the solid-state structure and absolute configuration of (Sp,Sp,Rc,Rc)-5 were confirmed by X-ray crystallography.  相似文献   

2.
The diol, 1d-1,2,5,6-tetra-O-methyl-chiro-inositol (D-9), can be conveniently prepared from 1d-chiro-inositol using a series of standard protection/deprotection steps. Treatment of D-9 with Ph2PCl gives the chiral diphosphinite, 1d-3,4-bis(O-diphenylphosphino)-1,2,5,6-tetra-O-methyl-chiro-inositol (D-10). The structure of D-10 has been determined by X-ray crystallography. Using 1l-chiro-inositol as starting material and following the same synthetic sequence used to produce D-10, the other enantiomer of this diphosphinite, 1l-3,4-bis(O-diphenylphosphino)-1,2,5,6-tetra-O-methyl-chiro-inositol (L-10) can also be obtained. Ruthenium complexes of these diphosphinite ligands can be conveniently prepared through ligand substitution reactions with appropriate substrate complexes. Thus, treatment of [RuCl2(COD)]n with D-10 in the presence of triethylamine produces the bis(diphosphinite) complex, RuHCl{κ2(P,P)-1d-3,4-bis(O-diphenylphosphino)-1,2,5,6-tetra-O-methyl-chiro-inositol}2 (11). In addition, reaction between RuCl2(PPh3)3, D-10 and (1R,2R)-(+)-1,2-diphenylethylenediamine gives the mono(diphosphinite) complex, RuCl22(P,P)-1d-3,4-bis(O-diphenylphosphino)-1,2,5,6-tetra-O-methyl-chiro-inositol}{κ2(N,N)-(1R,2R)-(+)-1,2-diphenylethylenediamine} (12). The closely related complex RuCl22(P,P)-1d-3,4-bis(O-diphenylphosphino)-1,2,5,6-tetra-O-methyl-chiro-inositol}{κ2(N,N)-(1S,2S)-(−)-1,2-diphenylethylenediamine} (13) can be obtained in a similar manner using (1S,2S)-(−)-1,2-diphenylethylenediamine in place of the corresponding (+)-isomer. These new chiral, diphosphinite complexes catalyse the hydrogenation of the ketones acetophenone and 3-quinuclidinone to give the corresponding alcohols with low to moderate enantiomeric excesses. The complexes are not catalytically active for the hydrogenation of the olefin dimethylitaconate or the α-ketoester methyl benzoylformate.  相似文献   

3.
The reactions of 1,2-bis(tetrazol-5-yl)benzene (1), 1,3-bis(tetrazol-5-yl)benzene (2), 1,4-bis(tetrazol-5-yl)benzene (3), 1,2-(Bu3SnN4C)2C6H4 (4), 1,3-(Bu3SnN4C)2C6H4 (5) and 1,4-(Bu3SnN4C)2C6H4 (6) with 1,2-dibromoethane were carried out by two different methods in order to synthesise pendant alkyl halide derivatives of the parent bis-tetrazoles. This lead to the formation of several alkyl halide derivatives, substituted at either N1 or N2 on the tetrazole ring, as well as the surprising formation of several vinyl derivatives. The crystal structures of both 1,2-[(2-vinyl)tetrazol-5-yl)]benzene (1-N,2-N′) (1b) and 1,3-bis[(2-bromoethyl)tetrazol-5-yl]benzene (2-N,2-N′) (5d) are discussed.  相似文献   

4.
The first examples of asymmetric transfer hydrogenation of α-fluoroacetophenones are reported. Eight para-substituted α-fluoroacetophenones have been reduced using four catalytic systems constructed of [RuCl2(p-cymene)2]2 or [RuCl2(mesitylene)2]2 in combinations with each of the ligands (1R,2R)-N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine ((R,R)-TsDPEN) and (1R,2R)-N-(p-toluenesulfonyl)-1,2-cyclohexanediamine ((R,R)-TsCYDN). All reactions were performed in both water and formic acid/triethylamine. The highest enantioselectivity was obtained using the (R,R)-TsDPEN ligand in a formic acid/triethylamine mixture, giving the (S)-1-aryl-2-fluoroethanols in high to moderate enantiomeric excess (97.5-84.5%). For this solvent system the presence of electron withdrawing groups in the para position reduced the enantioselectivity. Reactions performed in water generally gave lower enantioselectivity and reaction rate, although RuCl(mesitylene)-(R,R)-TsDPEN yielded the product alcohols with enantiomeric excess in the range of 95.5-76.5%.  相似文献   

5.
Reaction of 4-isopropylamino-5-chloro-1,2-dithiole-3-ones 3 and S2Cl2 in acetonitrile gave selectively 3-oxo-bis[1,2]dithiolo[1,4]thiazine-5-thiones 1 by the addition of triethylamine and bis[1,2]dithiolo[1,4]thiazine-3,5-diones 5 under the action of formic acid. 3,5-Diones 5 were also obtained by intramolecular cyclization of N,N-bis(5-chloro-3-oxo[1,2]dithiol-4-yl)amines 6 with S2Cl2 in the presence of Et3N.  相似文献   

6.
A series of dioxovanadium(V) complexes of tridentate ligands obtained by monocondensation of chiral 1,2-diphenyl-1,2-diaminoethane and aromatic o-hydroxyaldehydes was synthesized. The complexes were characterized by spectroscopic methods in the solid state (IR) and in solution (UV–Vis, CD, 1H and 51V NMR). Single crystal X-ray analysis was performed with (VO2L · H2O)2, denoted as (4 · H2O)2, where L is (S,S)-1-amino-2-{(2′-oxido-4′,6′-dimethoxyphenyl)methylene}amino-1,2-diphenylethane. Crystal structure analysis revealed that (4 · H2O)2 contains oxo-bridged dimers of 4 joined with water molecules by hydrogen bonding interactions, and that two five-membered chelate rings in the dimeric molecule adopt different envelope conformations, one on the asymmetric carbon atom linked to the azomethine nitrogen and the other on the asymmetric carbon atom linked to the primary amino nitrogen. The (S,S)- and (R,R)-complexes bearing the methoxy substituent in positions 3 or 5 of the salicylidene moiety catalyze the oxidation of phenyl methyl sulfide by cumene hydroperoxide yielding the corresponding sulfoxide almost quantitatively with 34–39% enantiomeric excess.  相似文献   

7.
A family of aluminum-methyl complexes supported by tetradentate phenoxy-amine ligands has been prepared and employed in the ring-opening polymerization of rac-lactide; the ligands include N,N-bis(3,5-dimethyl-2-hydroxybenyl)-N′,N′-dimethyl-1,2-diaminoethane (L1), N,N-bis(3,5-diisopropyl-2-hydroxybenyl)-N′,N′-dimethyl-1,2-diaminoethane (L2) and N,N-bis(3,5-dichloro-2-hydroxybenyl)-N′,N′-dimethyl-1,2-diaminoethane (L3). Polymerizations of rac-lactide were carried out by treatment of the aluminum-methyl complexes with PhCH2OH and rac-lactide at 70 °C, affording well-controlled formation of polylactide (PLA) and a moderate isotactic bias for initiators bearing L1 and L2; the chloro-substituted ligand L3 afforded largely atactic PLA.  相似文献   

8.
A new series of titanium(IV) and zirconium(IV) amides have been prepared from the reaction between M(NMe2)4 (M = Ti, Zr) and C2-symmetric ligands, (R)-2,2′-bis(pyridin-2-ylmethylamino)-6,6′-dimethyl-1,1′-biphenyl (2H2), (R)-2,2′-bis(pyrrol-2-ylmethyleneamino)-6,6′-dimethyl-1,1′-biphenyl (3H2), (R)-2,2′-bis(diphenylphosphinoylamino)-6,6′-dimethyl-1,1′-biphenyl (4H2), (R)-2,2′-bis(methanesulphonylamino)-6,6′-dimethyl-1,1′-biphenyl (5H2), (R)-2,2′-bis(p-toluenesulphonylamino)-6,6′-dimethyl-1,1′-biphenyl (6H2), and C1-symmetric ligands, (R)-2-(diphenylthiophosphoramino)-2′-(dimethylamino)-6,6′-dimethyl-1,1′-biphenyl (7H) and (R)-2-(pyridin-2-ylamino)-2′-(dimethylamino)-6,6′-dimethyl-1,1′-biphenyl (8H), which are derived from (R)-2,2′-diamino-6,6′-dimethyl-1,1′-biphenyl. Treatment of M(NMe2)4 with 1 equiv. of N4-ligand, 2H2 or 3H2 gives, after recrystallization from an n-hexane solution, the chiral zirconium amides (2)Zr(NMe2)2 (9), (3)Zr(NMe2)2 (11), and titanium amide (3)Ti(NMe2)2 (10), respectively, in good yields. Reaction of Zr(NMe2)4 with 1 equiv of diphenylphosphoramide 4H2 affords the chiral zirconium amide (4)Zr(NMe2)2 (12) in 85% yield. Under similar reaction conditions, treatment of Ti(NMe2)4 with 1 equiv. of sulphonylamide ligand, 5H2 or 6H2 gives, after recrystallization from a toluene solution, the chiral titanium amides (5)Ti(NMe2)2·0.5C7H8 (13·0.5C7H8) and (6)Ti(NMe2)2 (15), respectively, in good yields, while reaction of Zr(NMe2)4 with 1 equiv. of 5H2 or 6H2 gives the bis-ligated complexes, (5)2Zr (14) and (6)2Zr (16). Treatment of M(NMe2)4 with 2 equiv. of diphenylthiophosphoramide ligand 7H or N3-ligand 8H gives, after recrystallization from a benzene solution, the bis-ligated chiral zirconium amides (7)2Zr(NMe2)2 (17) and (8)2Zr(NMe2)2 (19), and bis-ligated chiral titanium amide (8)2Ti(NMe2)2 (18), respectively, in good yields. All new compounds have been characterized by various spectroscopic techniques, and elemental analyses. The solid-state structures of complexes 10, 12, 13, and 17-19 have further been confirmed by X-ray diffraction analyses. The zirconium amides are active catalysts for the asymmetric hydroamination/cyclization of aminoalkenes, affording cyclic amines in good to excellent yields with moderate ee values, while the titanium amides are not.  相似文献   

9.
Nucleophilic substitutions of Pd(N,N)Cl2[(N,N = 1-methyl-2-(arylazo)imidazole (RaaiMe), p-RC6H4N=NC3H2NN-1-Me; 2-(arylazo)pyridine (Raap), p-RC6H4N=NC5H4N; 2-(arylazo)pyrimidine (Raapm), p-RC6H4N=NC4H3N2 where R = H (a), Me (b), Cl (c)] with 8-quinolinol (HQ) have been examined by spectrophotometry at 298 K in MeCN solution. The product, Pd(Q)2, has also been confirmed by independent synthesis from Na2[PdCl4] and HQ in EtOH. The kinetics of the reaction have been studied under pseudo-first-order conditions and the analyses support a nucleophilic association path. A single phase reaction has been observed and follows the rate law, rate = a + k [Pd(N,N)Cl2] [HQ]2. Thus, the reaction is first order in [Pd(N,N)Cl2] and second order in [HQ]. External addition of Cl(LiCl) suppresses the rate. The rate increases as follows: Pd(RaaiMe)Cl2 < Pd(Raap)Cl2 < Pd(Raapm)Cl2.  相似文献   

10.
Two new heteropolynuclear Schiff base complexes, [Ni2Cd2L2Cl2(μ-Cl)2] (1) and [Ni2CdL′2Cl(H2O)]ClO4·H2O (2) where L = [N,N′-bis(2-hydroxyacetophenylidene)]propane-1,2-diamine and L′ = [N,N′-bis(2-hydroxypropiophenylidene)]propane-1,2-diamine, have been synthesized by refluxing equimolar amounts of nickel perchlorate, cadmium chloride and the respective tetradentate Schiff base ligand, H2L or H2L′ in methanol medium. The complexes have been characterized by microanalytical, spectroscopic, single crystal X-ray diffraction and other physicochemical studies. Structural studies on 1 reveal the presence of a bis(heterodinuclear) [NiIICdII]2 unit in which the two central cadmium ions are doubly chloro-bridged with each other and each of them is connected to a nickel(II) center through two phenolate oxygen bridges. In contrast, complex 2 contains a heterotrinuclear [NiIICdIINiII] unit in which the central cadmium ion is connected to two nickel(II) centers through two doubly bridging phenolate oxygen atoms. The Cd(II) ions in 1 and 2 adopt distorted, square pyramidal (CdO2Cl3) and octahedral (CdO5Cl) geometries respectively. On the other hand, the Ni(II) ions in both 1 and 2 assume the same coordination geometry, i.e. a distorted square planar (NiO2N2) arrangement. Intermolecular C-H?Cl or O-H?Cl and O-H?O hydrogen bonding interactions are operative in the complexes to build up 2D supramolecular structures in their solid states.  相似文献   

11.
Ping Liu 《Tetrahedron》2010,66(3):631-122
Salen and half-salen palladium(II) complexes (salden)Pd (1, salden=N,N′-bis(3,5-di- tert-butylsalicylidene)-1,2-dimethylethylenediamine), (hsalph)PdCl (2, hsalph=3,5-di-tert- butylsalicylidene-1-iminophenylene-2-amine), and (salph)Pd (4, salph=N,N′-bis(3,5-di-tert- butylsalicylidene)-1,2-phenylenediamine) were prepared and structurally characterized by X-ray crystallography. Complex 2 proved to exhibit high catalytic activity toward Suzuki-Miyaura reaction. Polyaromatic C3-symmetric derivatives and various fluorinated biphenyl derivatives were readily achieved in good yields using Suzuki-Miyaura reaction catalyzed by complex 2.  相似文献   

12.
The tetranuclear ruthenium arene compound [(cym)4Ru4(2)Cl6]Cl2 (3) (cym = η6-p-cymene, 2 = 1,2-bis(di-N-methylimidazol-2-ylphosphino)ethane) was prepared and characterised by one- and two-dimensional NMR techniques. Its cytotoxicity against four different cell lines was determined and, with an approximate IC50 of >100 μM 3 can be regarded as non-toxic. Its partition coefficient in n-octanol/water (log D7.4) was also determined. The structures of complex 3 as well as of the related compound [(cym)2Ru2(4)Cl2]Cl2 (5) (4 = 1,2-bis(di-N-methylimidazol-2-ylphosphino)ethane dioxide) were determined by single crystal structure analysis. Upon oxidation in protic solvents, ligand 2 shows P-C bond cleavage reactions to yield P,P′-bis(N-methylimidazol-2-yl)ethylene diphosphinic acid (6).  相似文献   

13.
Five mononuclear complexes of manganese(II) of a group of the general formula, [MnL(NCS)2] where the Schiff base L = N,N′-bis[(pyridin-2-yl)ethylidene]ethane-1,2-diamine (L1), (1); N,N′-bis[(pyridin-2-yl)benzylidene]ethane-1,2-diamine (L2), (2); N,N′-bis[(pyridin-2-yl)methylidene]propane-1,2-diamine (L3), (3); N,N′-bis[(pyridin-2-yl)ethylidene]propane-1,2-diamine (L4), (4) and N,N′-bis[(pyridin-2-yl)benzylidene]propane-1,2-diamine (L5), (5) have been prepared. The syntheses have been achieved by reacting manganese chloride with the corresponding tetradentate Schiff bases in presence of thiocyanate in the molar ratio of 1:1:2. The complexes have been characterized by IR spectroscopy, elemental analysis and other physicochemical studies, including crystal structure determination of 1, 2 and 4. Structural studies reveal that the complexes 1, 2 and 4 adopt highly distorted octahedral geometry. The antibacterial activity of all the complexes and their respective Schiff bases has been tested against Gram(+) and Gram(−) bacteria.  相似文献   

14.
The dimeric starting material [Ru(η6-p-cymene)(μ-Cl)Cl]2 reacts with N3,N3′-bis(diphenylphosphino)-2,2′-bipyridine-3,3′-diamine, 1 and P,P′-diphenylphosphinous acid-P,P′-[2,2′-bipyridine]-3,3′-diyl ester, 2 ligands to afford bridged dinuclear complexes [C10H6N2{NHPPh2-Ru(η6-p-cymene)Cl2}2], 3 and [C10H6N2{OPPh2-Ru(η6-p-cymene)Cl2}2], 4 in quantitative yields. These bis(aminophosphine) and bis(phosphinite) based Ru(II) complexes serve as active catalyst precursors for the transfer hydrogenation of acetophenone derivatives in 2-propanol and especially 4 acts as a good catalyst, giving the corresponding alcohols in 99% yield in 20 min (TOF ? 280 h−1).  相似文献   

15.
Two Ni(II) adamantane complexes, [Ni(bqad)Cl2] (1) and [Ni(bpad)(dmbp)(H2O)](ClO4)2·CH3OH H2O (2) (bqad = N,N′-bis(2-quinolinylmethyl) amantadine, bpad = N,N′-bis(2-pyridylmethyl)amantadine, dmbp = 5,5′-dimethyl-2,2′-bipyridine) have been synthesized and characterized by elemental analysis, infrared spectroscopy and single crystal X-ray diffraction. The nickel centers in complex 1 have a distorted tetragonal pyramidal geometry, while the coordination polyhedron of 2 can be described as a distorted octahedron. The reaction kinetics for reduction of p-nitrophenol to p-aminophenol catalyzed by these complexes has been investigated by UV–visible spectrophotometry. Complex 1 exhibits a higher turnover frequency of 1.4 min?1 for the reduction of p-nitrophenol.  相似文献   

16.
Two aza-analogues of distyrylbenzene namely: 1,4-bis[β-(4-quinolyl)vinyl]benzene (PhQ) and 1,4-bis[β-(4-pyridyl)vinyl]benzene (PhPy) containing arachno-decaborane or arachno-nonaborane clusters have been isolated: 6,9-(PhQ)2-arachno-B10H12 (1), N,N′-bis[9-Me2S-arachno-B10H12-6-yl]PhQ (2), 6,9-(PhPy)2-arachno-B10H12 (3), N,N′-bis[(9-Me2S)-arachno-B10H12-6-yl]PhPy (4), N,N′-bis[arachno-B9H13-4-yl]PhQ (5), 4-PhQ-arachno-B9H13 (6), N,N′-bis[arachno-B9H13-4-yl]PhPy (7), and 4-PhPy-arachno-B9H13 (8). These boronated compounds were easily prepared from the displacement reactions of weaker ligand (SMe2) of bis (dimethyl sulfide) arachno-decaborane(14) {6,9-(Me)2SB10H12}or dimethyl sulfide-arachno-nonaborane {4-(Me)2SB9H13} by the stronger bidentate ligands of PhQ or PhPy in ratio (1:2). The electronic interaction between decaborane or nonaborane arachno-type unit and the bonded pyridine units has been investigated by UV-Vis spectroscopy and by AM1 molecular orbital calculations. The resulting compounds undergo trans-cis photoisomerization upon excitation. The connection of boron clusters to PhQ and PhPy led to enhancing of the photoreactivity and decreasing of the fluorescence quantum yield of the products.  相似文献   

17.
The reaction of BiCl3 and N,N-dimethyl-1,2-bis(pyridyl)ethane chloride (Me,Me-Bpe) in 2 M HCl affords a polymer chlorobismuthate complex {((Me,Me)Bpe)[BiCl5]} n (I). The structure of complex I is determined by X-ray diffraction analysis (CIF file CCDC 1058842). The anionic moiety of the complex is presented by a 1D coordination polymer ([BiCl5]2n) n consisting of octahedral blocks {Cl6} linked by µ2- bridging chloride ligands into infinite zigzag chains.  相似文献   

18.
Gas-phase pyrolysis of N-(1H-benzimidazol-2-yl)-N′-arylidenehydrazines 1a-e gave the corresponding arylnitriles 2a-e, 2-aminobenzimidazole 3, 2,4,5-triphenylimidazole 4, 1,3-diphenyl-8H-2,3a,8-triazacyclopenta[a]indene 5, and 5,11-diphenyl-6H,12H-dibenzimidazo[1,2-a];1’,2’-d]pyrazine 6. The kinetics and analysis of the products of reaction are reported and used to elucidate the mechanism of the elimination process.  相似文献   

19.
20.
The syntheses and crystal structures of four new uranyl complexes with [O,N,O,N′]-type ligands are described. The reaction between uranyl nitrate hexahydrate and the phenolic ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-N′,N′-dimethylethylenediamine)], H2L1 in a 1:2 molar ratio (M to L), yields a uranyl complex with the formula [UO2(HL1)(NO3)] · CH3CN (1). In the presence of a base (triethylamine, one mole per ligand mole) with the same molar ratio, the uranyl complex [UO2(HL1)2] (2) is formed. The reaction between uranyl nitrate hexahydrate and the ligand [(N,N-bis(2-hydroxy-3,5-di-t-butylbenzyl)-N′,N′-dimethylethylenediamine)], H2L2, yields a uranyl complex with the formula [UO2(HL2)(NO3)] · 2CH3CN (3) and the ligand [N-(2-pyridylmethyl)-N,N-bis(2-hydroxy-3,5-dimethylbenzyl)amine], H2L3, in the presence of a base yields a uranyl complex with the formula [UO2(HL3)2] · 2CH3CN (4). The molecular structures of 14 were verified by X-ray crystallography. The complexes 14 are zwitter ions with a neutral net charge. Compounds 1 and 3 are rare neutral mononuclear [UO2(HLn)(NO3)] complexes with the nitrate bonded in η2-fashion to the uranyl ion. Furthermore, the ability of the ligands H2L1–H2L4 to extract the uranyl ion from water to dichloromethane, and the selectivity of extraction with ligands H2L1, H3L5 (N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-3-amino-1-propanol), H2L6 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-1-aminobutane · HCl) and H3L7 · HCl (N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol · HCl) under varied chemical conditions were studied. As a result, the most efficient and selective ligand for uranyl ion extraction proved to be H3L7 · HCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号