首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a simple model of transient networks of telechelic associating polymers for molecular simulations and reports the main results obtained by molecular dynamics on the rheological properties of the transient networks. The steady shear viscosity obtained by the non-equilibrium molecular dynamics simulation exhibits shear thickening at moderate shear rates and shear thinning at larger shear rates. The behavior is similar to that observed in experiments of telechelic associating polymers. By analyzing the distribution function of the end-to-end vector of bridge chains as a function of the shear rate, we find that shear thickening is mainly caused by the stress from the bridge chains highly stretched by shear flow. We also find that fracture of the transient network occurs in the shear-thinning regime at high shear rates.  相似文献   

2.
使用非平衡分子动力学模拟方法研究了单原子LJ流体的非牛顿流变行为,并在系统中分别施加稳态Couette流场和振荡剪切流场.在Couette流场的模拟中,流体出现剪切变稀和法向应力差效应,不同剪切率下的径向分布函数反映了流体分子由于剪切所导致的微观结构变化,通过分析势能函数发现当剪切率增大时,分子间排斥作用增强,吸引作用减弱.在振荡剪切流场的模拟中,发现剪切应力和剪切率之间的相位差随频率增加而增加,随频率增加复数粘度的实部先增大再减小,虚部单调增加,导致虚部粘度相对实部粘度比例增大,弹性模量和粘性模量之比也随频率增加而增加.这三点现象表明LJ流体出现粘弹性行为,且在高频率下,弹性所占比重增大.  相似文献   

3.
《Physica A》2006,362(1):30-35
We analyse the structure of a single polymer tethered to a solid surface undergoing a Couette flow. We study the problem using molecular dynamics (MD) and hybrid MD-continuum simulations, wherein the polymer and the surrounding solvent are treated via standard MD, and the solvent flow farther away from the polymer is solved by continuum fluid dynamics (CFD). The polymer represents a freely jointed chain (FJC) and is modelled by Lennard-Jones (LJ) beads interacting through the FENE potential. The solvent (modelled as a LJ fluid) and a weakly attractive wall are treated at the molecular level. At large shear rates the polymer becomes more elongated than predicted by existing theoretical scaling laws. Also, along the normal-to-wall direction the structure observed for the FJC is, surprisingly, very similar to that predicted for a semiflexible chain. Comparison with previous Brownian dynamics simulations (which exclude both solvent and wall potential) indicates that these effects are due to the polymer–solvent and polymer–wall interactions. The hybrid simulations are in perfect agreement with the MD simulations, showing no trace of finite size effects. Importantly, the extra cost required to couple the MD and CFD domains is negligible.  相似文献   

4.
Non-equilibrium molecular dynamics (NEMD) simulations play a major role in characterizing the rheological properties of fluids undergoing shear flow. However, all previous studies of flows in molecular fluids either use an ‘atomic’ thermostat which makes incorrect assumptions concerning the streaming velocity of atoms within their constituent molecules, or they employ a centre of mass kinetic (COM) thermostat which only controls the temperature of relatively few degrees of freedom (3) in complex high molecular weight compounds. In the present paper we show how recently developed configurational expressions for the thermodynamic temperature can be used to develop thermostatting mechanisms which avoid both of these problems. In this work, we propose a thermostat based on a configurational expression for the temperature and apply it to NEMD simulations of chlorine undergoing Couette flow. The results so obtained are compared with those obtained using a COM kinetic thermostat. At equilibrium the properties of systems thermostatted in the two different ways are of course equivalent. We show that the two responses only differ far from equilibrium. In particular, we show that the formation of a string phase for extremely high shear rates is an artefact of the COM thermostat. At the largest shear rates studied with the configurational thermostat, no string phase is observed.  相似文献   

5.
There are contradictory published data on the behavior of fluid slip at high shear rates. Using three methodologies (molecular dynamics simulations, an analytical theory of slip, and a Navier-Stokes-based calculation) covering a range of fluids (bead-spring liquids, polymer solutions, and ideal gas flows) we show that as shear rate increases, the amount of slip, as measured by the slip length, asymptotes to a constant value. The results clarify the molecular mechanics of how slip occurs. Furthermore, they indicate that in this limit, molecular dynamics simulations must accurately account for heat transfer to the solid.  相似文献   

6.
We report on nonequilibrium molecular-dynamics simulations of the shear-thickening transition in a simple fluid under shear. We relate the shear-thickening transition to the onset of instabilities in the flow profile and to that of dramatic variations in normal stress differences. The dependence of the critical shear rate, which indicates the onset of shear thickening, on density and temperature is rationalized by introducing a ratio between two characteristic times, quantifying the short-time mobility of a particle and the deformation imposed by the applied shear rate, respectively. The shear-thickening transition is shown to occur at a constant value for this ratio for all state points studied. From a structural point of view, this transition is accompanied by the formation of clusters as recently observed in experiments on complex fluids.Received: 26 July 2004, Published online: 21 September 2004PACS: 83.60.Rs Shear rate-dependent structure (shear thinning and shear thickening) - 47.50. + d Non-Newtonian fluid flows - 83.10.Mj Molecular dynamics, Brownian dynamics  相似文献   

7.
Molecular dynamics simulations of linear C78H158 were conducted to investigate the dynamics of individual chains under shear. The distribution of the end-to-end vector exhibited Gaussian behavior at low shear rates; however, it displayed a bimodal form at high shear rates as rotational motion of the individual chains effectively lowered the vector's magnitude. Correlations between the components of the end-to-end vector revealed multiple time scales associated with the fluid response: the Rouse time, and several that were associated with the deformation and rotational dynamics of the fluid.  相似文献   

8.
Y. Yamada  Y. Enomoto 《Physica A》2008,387(1):1-11
Brownian dynamics simulations of interacting magnetic particles in a quasi-two-dimensional ferrofluid system are performed at zero temperature, under the influence of oscillatory shear flow in the absence of external magnetic fields. Starting from chain-like clusters of the particles, we study the time-dependent behavior of both magnetization and microstructures of the ferrofluid by changing values of two parameters, the shear rate strength and frequency of oscillatory shear flow. Simulation results show that there are three different dynamical regimes for the chain clusters dynamics, depending on these two parameters. Scaling behavior of the asymptotic magnetization is also observed for a certain range of parameters.  相似文献   

9.
The end-over-end tumbling dynamics of individual polymers in dilute and semidilute solutions is studied under shear flow by large-scale mesoscale hydrodynamic simulations. End-to-end vector relaxation times are determined along the flow, gradient, and vorticity directions. Along the flow and gradient directions, the correlation functions decay exponentially with sinusoidal modulations at short times. In dilute solution, the decay times of the various directions are very similar. However, in semidilute solutions, the relaxation behaviors are rather different along the various directions, with the longest relaxation time in the vorticity direction and the shortest time in the flow direction. The various relaxation times exhibit a power-law shear-rate dependence with the exponent -?2/3 at high shear rates. Quantitatively, the relaxation times are equal to the tumbling times extracted from cross-correlation functions of fluctuations of radius-of-gyration components along the flow and gradient direction.  相似文献   

10.
When shaken vertically, a hanging chain displays a startling variety of distinct behaviors. We find experimentally that instabilities occur in tonguelike bands of parameter space, to swinging or rotating pendular motion, or to chaotic states. Mathematically, the dynamics are described by a nonlinear wave equation. A linear stability analysis predicts instabilities within the well-known resonance tongues; their boundaries agree very well with experiment. Full simulations of the 3D dynamics reproduce and elucidate many aspects of the experiment. The chain is also observed to tie knots in itself, some quite complex. This is beyond the reach of the current analysis and simulations.  相似文献   

11.
邓真渝  章林溪 《物理学报》2015,64(16):168201-168201
采用非平衡态分子动力学方法研究了二维复杂囊泡在剪切流中的动力学行为. 模拟发现了复杂囊泡经典的翻滚(tumbling)、摇摆(trembling)和坦克履(tank-treading)行为, 还观察到由坦克履行为向平动行为(translating)的转变. 囊泡的平动行为与剪切率大小、复杂囊泡的形状密切相关. 当大囊泡均匀嫁接较多数目的小囊泡后, 其平动方式消失. 该研究有益于加深对囊泡在剪切流场中复杂性行为的理解.  相似文献   

12.
There is growing evidence that the flow of driven amorphous solids is not homogeneous, even if the macroscopic stress is constant across the system. Via event-driven molecular dynamics simulations of a hard sphere glass, we provide the first direct evidence for a correlation between the fluctuations of the local volume fraction and the fluctuations of the local shear rate. Higher shear rates do preferentially occur at regions of lower density and vice versa. The temporal behavior of fluctuations is governed by a characteristic time scale, which, when measured in units of strain, is independent of shear rate in the investigated range. Interestingly, the correlation volume is also roughly constant for the same range of shear rates. A possible connection between these two observations is discussed.  相似文献   

13.
Molecular origin and dynamic behavior of slip in sheared polymer films   总被引:2,自引:0,他引:2  
The behavior of the slip length in thin polymer films subject to planar shear is investigated using molecular dynamics simulations. At low shear rates, the slip length extracted from the velocity profiles correlates well with that computed from a Green-Kubo analysis. Beyond chain lengths of about N=10, the molecular weight dependence of the slip length is dominated strongly by the bulk viscosity. The dynamical response of the slip length with increasing shear rate is well captured by a power law up to a critical value where the momentum transfer between wall and fluid reaches its maximum.  相似文献   

14.
K. Kang  W. Cai 《哲学杂志》2013,93(14-15):2169-2189
Fracture of silicon and germanium nanowires in tension at room temperature is studied by molecular dynamics simulations using several interatomic potential models. While some potentials predict brittle fracture initiated by crack nucleation from the surface, most potentials predict ductile fracture initiated by dislocation nucleation and slip. A simple parameter based on the ratio between the ideal tensile strength and the ideal shear strength is found to correlate very well with the observed brittle versus ductile behaviours for all the potentials used in this study. This parameter is then computed by ab initio methods, which predict brittle fracture at room temperature. A brittle-to-ductile transition (BDT) is observed in MD simulations at higher temperature. The BDT mechanism in semiconductor nanowires is different from that in the bulk, due to the lack of a pre-existing macrocrack that is always assumed in bulk BDT models.  相似文献   

15.
In order to establish constitutive equations for a viscoelastic fluid uniform shear flow is usually required. However, in the last 10 years S. Q. Wang and co-workers have demonstrated that some entangled polymers do not flow with the uniform shear rate as usually assumed, but instead choose to separate into fast and slow flowing regions. This phenomenon, known as shear banding, causes flow instabilities and in principle invalidates all rheological measurements when it occurs. In this Letter we report the first observation of shear banding in molecular dynamics simulations of entangled polymer melts. We show that our observations are in a very good agreement with the phenomenology developed by Fielding and Olmsted. Our findings provide a simple way of validating the empirical macroscopic phenomenology of shear banding.  相似文献   

16.
When nonequilibrium molecular dynamics is used to impose isothermal shear on a two-body periodic system of hard disks or spheres, the equations of motion reduce to those describing a Lorentz gas under shear. In this shearing Lorentz gas a single particle moves, isothermally, through a spatially periodic shearing crystal of infinitely massive scatterers. The curvilinear trajectories are calculated analytically and used to measure the dilute Lorentz gas viscosity at several strain rates. Simulations and solutions of Boltzmann's equation exhibit shear thinning resembling that found inN-body nonequilibrium simulations. For the three-dimensional Lorentz gas we obtained an exact expression for the viscosity which is valid at all strain rates. In two dimensions this is not possible due to the anisotropy of the scattering.  相似文献   

17.
The microscopic and macroscopic response of a polymer solution in start-up shear flow was investigated using fluorescence microscopy of single molecules, bulk viscosity measurements, and Brownian dynamics simulations. An overshoot in viscosity was observed upon flow inception and understood via the observed molecular extension and by simulation findings. Increasing the polymer concentration up to six times the overlap concentration ( C(*)) has no effect on the character of the dynamics of individual molecules.  相似文献   

18.
19.
Molecular dynamics simulations of shear band development over 1000% strain in simple shear are used to test whether the local plastic strain rate is proportional to exp(-1/chi), where chi is a dimensionless quantity related to the disorder temperature or free volume that characterizes the structural state of the glass. Scaling is observed under the assumption that chi is linearly related to the local potential energy per atom. We calculate the potential energy per atom corresponding to absolute zero disorder temperature and the energy needed to create a shear transformation zone.  相似文献   

20.
Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using "first principles" molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号