首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decay dynamics of local vibrational modes provides unique information about energy relaxation processes to solid-state phonon bath. In this Letter the lifetimes of the asymmetric stretch mode of interstitial 16O and 17O isotopes in Si are measured at 10 K directly by time-resolved, transient bleaching spectroscopy to be 11.5 and 4.5 ps, respectively. A calculation of the three-phonon density of states shows that the 17O mode lies in the highest phonon density resulting in the shortest lifetime. The lifetime of the 16O mode in Ge is measured to be 125 ps, i.e., approximately 10 times longer than in Si. The interaction between the local modes and the lattice vibrations is discussed according to the activity of phonon combinations.  相似文献   

2.
A quasi-linear Si2O molecule model (QLMM) is suggested from an analysis of the configuration and the interactions of an isolated oxygen atom with its neighbor silicon atoms. The vibrational modes are assigned and the infrared absorption spectra are calculated in detail with the model. The theoretical results are in reasonably good agreement with reported experimental values. This agreement shows that for the analysis of the vibrational modes of the interstitial oxygen atom in silicon crystals it is not necessary to consider the coupling of the molecule with the rest of the lattice. The interaction of the oxygen atom with its six second-nearest silicon atoms only causes the level separation of the 2 mode and the formation of the fine structure.  相似文献   

3.
赵波  崔季平  樊菁 《计算物理》2010,27(4):579-585
用分子动力学方法结合Dlott等人提出的"门槛模"理论研究集体相互作用下硝基甲烷振动能量弛豫过程.其中振动冷却过程与实验符合的很好.在振动激发过程的分子动力学模拟中观测到与实验一致的基频频移现象.用分子动力学方法从微观上详细地描述出分子"门槛模"振动激发过程.研究表明,在高温高压作用下,集体作用效应对多原子振动激发具有不可忽视的作用,能量传递过程中除了基频的作用外,强烈的非线性相互作用引起的振动模泛频也携带有大量的振动能,这些泛频也对分子振动能量传递产生重要影响.  相似文献   

4.
The i.r. absorption spectrum of GaP in the range 500–1500 cm?1 is found to contain several sharp impurity modes. Doping and annealing experiments show some of these modes to be connected with the presence of oxygen. Such modes are found to be present in all samples of nominally undoped LEC grown GaP. From the unusually high frequency of the modes and correlations with other semiconductors it is concluded that the oxygen is situated in interstitual sites. A linear chain model is developed to explain the frequency of the mode using force constants similar to those in oxygen doped silicon. The model is then used to predict the vibrational frequencies and the absorption strengths of several types of complex involving the oxygen interstitial. These calculations together with the absorption spectra suggest that oxygen-carbon and oxygen-boron complexes are also present in LEC grown GaP.  相似文献   

5.
Magnetic particles freely moving in a fluid may organize themselves into dense phases, bulk clusters, or linear chains. The dynamics of particles forming a chain is analyzed theoretically taking into account the magnetic dipole interaction as well as the Van der Waals molecular interaction. The vibrational spectrum has two branches (the magnetic branch associated with the rotation of the magnetic moment of a particle and the elastic branch associated with the displacement of particles). In the case of particles with constant mass density and magnetic moment, which is interesting for applications, these two modes are in fact independent; i.e., the effects of mode hybridization are weak. However, these effects can be manifested for hollow particles. From analysis of the vibrational spectrum, the criterion for the chain stability to a transition to a denser phase is established.  相似文献   

6.
A vibrational spectroscopic study of binary mixtures of salicylaldehyde (SA) in three different solvents (polar and nonpolar) is presented. The vibrational modes ν(CO), hydroxyl stretching mode (C OH) and aldehydic (C H) stretching vibration were analyzed. Changes in wavenumber position and full width half maximum have been explained for neat as well as binary mixtures with different volume fractions of the reference system, SA, in terms of inter‐ and intramolecular hydrogen bonding. The IR spectra of these mixtures have also been taken and compared with the Raman data. The spectral changes have been well explained using the concentration fluctuation model and solute–solvent interaction. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Raman and IR spectra of neat anisaldehyde (4‐methoxybenzaldehyde (4MeOBz)) and its binary mixtures (in polar and nonpolar solvents) with varying mole fraction of 4MeOBz were investigated. The concentration dependence of the wavenumber position and line width (full width at half maximum, FWHM) was analyzed to study the interaction of the solute vibrational modes with the microscopic solvent environment. The wavenumbers of Raman modes of 4MeOBz, namely, the carbonyl stretching, aldehydic δ (C H) and ring‐breathing modes, showed a linear variation in the peak position for varying concentrations of 4MeOBz in the different solvents. The dependence of Raman line width with concentration of 4MeOBz of these modes was also taken into account. The solute–solvent interaction is stronger in 2‐propanol and acetonitrile because of the formation of hydrogen bonds between them, whereas in benzene the interaction is too weak to affect the Raman modes. The modes, ν (CO) in 2‐propanol and aldehydic δ (C H) in acetonitrile, gave a Gaussian‐type line width variation, which was explained by the concentration fluctuation model, and the linear variation of the line widths was also interpreted by solute–solvent interactions. IR spectra were taken for these binary mixtures, which also give further support to these data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Microstructure factor (MF) is one of the most important properties of hydrogenated silicon (HS) used in industry. It is expressed via vibrational intensities of low stretching modes (LSM) of Si–H and high stretching modes (HSM) of SiH2/SiH3 bonds, i.e. MF = IHSM/(ILSM + IHSM). Mixed character of HSM due to Si–H contributions (together with SiH2/SiH3 ones) is confirmed by vibrational analysis of Si–H valence bonds in a 120Si:18H model of amorphous HS at the Perdew-Burke-Ernzerhof (PBE)/projector augmented wave (PAW)level. Comparison with precedent solutions for di- and poly-vacancies in microcrystalline HS shows that the redistribution of its Si–H modes between HSM and LSM bands depends on the extent of perturbation of the vacancies. This relation between the HSM/LSM repartition and HS distortion explains possible MF dependence from short or medium range ordering and its link with crystallisation kinetics.  相似文献   

9.
The long and slender geometry of the ear canal supports an infinite number of cross-sectional acoustic modes. The lower mode(s) travel along the length of the ear canal, while the higher modes are trapped near the ends of the canal. Many of these waves are introduced as a result of the complex vibrational shape of the eardrum. A three-dimensional mathematical model of the ear canal is formulated that includes this acoustic interaction. The coupled system is solved using matched asymptotic expansions that take advantage of the small slenderness ratio. This solution in the ear canal is in the form of a series of modes, the first being the plane-wave solution. As an illustrative example, the analysis is applied to a geometry that partially represents the ear canal and eardrum of a cat. The results indicate that the plane-wave solution is supplemented by multidimensional trapped modes at low frequencies and by a limited number of traveling waves at high frequencies. The magnitude of these higher modes generally increases with frequency and can significantly influence the acoustic coupling of the ear.  相似文献   

10.
Recent infrared absorption measurements of isotopic mixtures of CO on Cu(111) and Cu(001) are analyzed in terms of a dipole coupling theory for substitionally disordered overlayers. The variation of frequencies as well as intensities of the collective C–O stretching vibrational modes with composition are in excellent agreement with the dipole theory. The electronic and vibrational contributions to the molecular polarizability are consistent with those derived from a direct measurement of the normal mode dispersion using electron loss spectroscopy. The interaction of a vibrating dipole with its own image is discussed and it is shown that this effect should not be included explicitly in the dipole sum.  相似文献   

11.
In this work we study the interaction of water molecules with deuterated and bare polycrystalline diamond surfaces upon exposure to water vapor by X-ray photoelectron spectroscopy (XPS) and high resolution electron energy loss spectroscopy (HR-EELS). To distinguish the molecular origin of hydrogen bonds (i.e. C–H, O–H, C–O–H, etc.) formed on the diamond surface upon interaction with the water molecules, deuterated and hydrogenated gases were used in our experiments. Diamond films were deposited from a deuterated gas mixture to induce C(di)-D surface terminations. Water adsorption on bare diamond surface gives rise to the appearance of well defined and pronounced C–H and C–OH vibrational HR-EELS peaks and an intense O (1s) XPS peak. These chemically adsorbed water fragments survive 300 °C anneal temperature under ultra-high vacuum conditions. Annealing at 600 °C of the water exposed bare diamond surface results in disappearance of the C–OH vibrational modes alongside with a pronounced reduction of the C–H vibrational modes, whilst only upon annealing to ~ 800 °C the O (1s) XPS peak decreased substantially in intensity. We associate these effects with dissociative adsorption of the water molecules on the bare diamond surfaces.Water exposure onto a deuterated surface, on the other hand, does not result in the appearance of the C–OH vibrational peaks but only to an increase of the C–H vibrational HR-EELS mode along side with the appearance of a weaker XPS O (1) peak, as compared to the same experiment, performed on the bare surface. 300 °C anneal significantly diminishes surface oxygen concentration, as monitored by XPS. We associate these results with H2O decomposition reactions and also with molecular adsorption on deuterated diamond surfaces. Annealing of the water exposed deuterated diamond surface, results in a pronounced decrease and disappearance of the O (1s) XPS peak at a temperature of ~ 800 °C.  相似文献   

12.
In this work, a combined theoretical and experimental study of binary mixture of liquid p‐methylbenzaldehyde (PMBz) is reported using ab initio calculations as well as Raman and IR spectroscopies. The purpose of this study was twofold: firstly, to describe the interaction of PMBz in terms of bonding energies and preferred geometries; and secondly, to characterize the spectroscopic effects on the vibrational modes of PMBz in the binary mixture of different polar and nonpolar solvents. The three vibrational modes, namely, carbonyl stretching, ν(C CH3) and aldehydic (C H) vibrations have been analyzed in all the three solvents in different concentrations. The dependence of Raman linewidth on the concentration of PMBz of these modes was also taken into account. By analyzing the peak position and linewidth of these modes, it is seen that the solute–solvent interaction is stronger in BuOH and 1,2 dichloroethane (DCE) because of the hydrogen‐bonding interaction between these molecules. The formation of C H···O hydrogen bonds in liquid p‐methylbenzaldehyde is also investigated by Gaussian fitting. The ab initio calculations suggest several possible dimer configurations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
首次采用高温快速固相烧结的方法合成了Zr1-x Hfx W2O8(x=0, 0.2, 0.3, 0.4, 0.5, 0.6, 1)固溶体。合适的合成条件为: 温度1573~1693 K, 时间10 min~1 h, 该方法使合成时间和能耗比传统固相反应烧结显著降低。Zr1-x Hfx W2O8的晶胞参数与晶胞体积随Hf4+含量的增加而减小。合成的样品晶粒尺寸比常规固相烧结合成样品的颗粒尺寸较小, 颗粒大小在1~10 μm之间。拉曼光谱分析表明, Zr1-xHfxW2O8(0相似文献   

14.
FT‐IR and FT‐Raman spectra of 4‐chloro‐2‐(3‐chlorophenylcarbamoyl) phenyl acetate were studied. Vibrational wavenumbers and corresponding vibrational assignments were examined theoretically using the Gaussian03 set of quantum chemistry codes and the normal modes are assigned by potential energy distribution (PED) calculations. Simultaneous IR and Raman activation of the CO stretching mode shows the charge transfer interaction through a π‐conjugated path. Optimized geometrical parameters of the title compound are in agreement with the reported values. Analysis of the phenyl ring modes shows that C C stretching mode is equally active as strong bands in both IR and Raman, which can be interpreted as the evidence of intramolecular charge transfer via conjugated ring path and is responsible for hyperpolarizability enhancement leading to nonlinear optical activity. The red‐shift of the NH‐stretching wavenumber in the infrared spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
UV resonance Raman (UVRR) spectroscopy is used to probe changes in vibrational structure associated with cation–π interactions for the most prevalent amino acid π–donor, tryptophan. The model compound studied here is a diaza crown ether with two indole substituents. In the presence of sodium or potassium sequestered in the crown ether, or a protonated diaza group on the compound, the indole moieties participate in a cation–π interaction in which the pyrrolo group acts as the primary π‐donor. Systematic shifts in relative intensity in the 760–780 cm−1 region are observed upon formation of this cation–π interaction; we propose that these modifications reflect shifts of the delocalized, ring‐breathing W18 and hydrogen‐out‐of‐plane (HOOP) vibrational modes in this spectral region. The observed changes are attributed to perturbations of the π‐electron density as well as of normal modes that involve large displacement of the hydrogen atom on the C2 position of the pyrrole ring. Modest variations in the UVRR spectra for the three complexes studied here are correlated to differences in cation–π strength. Specifically, the UVRR spectrum of the sodium‐bound complex differs from those of the potassium‐bound or protonated‐diaza complexes, and may reflect the observation that the C2 hydrogen atom in the sodium‐bound complex exhibits the greatest perturbation relative to the other species. Normal modes sensitive to hydrogen‐bonding, such as the tryptophan W10, W9, and W8 modes, also undergo shifts in the presence of the salts. These shifts reflect the strength of interaction of the indole N H group with the iodide or hexafluorophosphate counteranion. The current observation that the W18 and HOOP normal mode regions of the indole crown ether compound are sensitive to cation–pyrrolo π interactions suggests that this region may provide reliable spectroscopic evidence of these important interactions in proteins. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Nb┐O八面体离子在KLN晶体中的特征Raman峰和IR反射带夏海瑞魏景谦王继扬于慧(山东大学物理系济南250100)王凯旋赵壁英(北京大学理化所北京100871)CharacteristicRamanPeaksandIRReflectionBand...  相似文献   

17.
The hexamethyldisiloxane (HMDS)(CH3)3SiOSi(CH3)3 molecule is one of the basic building blocks of silicones and polysiloxanes, as it is used for many chain terminations. Far‐infrared, mid‐infrared, and polarized Raman spectroscopic studies, combined with quantum chemical calculations and vibrational normal mode analyses, were performed for the HMDS molecule. The internal rotation of the trimethylsilyl group was calculated to be nearly free. The large‐amplitude bending motion was found very anharmonic with a barrier to linearity below 4 kJ/mol. Exhaustive assignments of observed wavenumbers have been performed on the basis of calculated potential energy distributions (PED) and atomic displacements. By isotopic 16O 18O substitution, the Si O Si symmetric and antisymmetric stretching modes shift from 521 and 1074 cm−1 to 514 and 1028 cm−1, respectively. This spectroscopic observation provides convincing evidence that the molecule is bent with an angle estimated at around 150°. The comparison of HMDS vibrational spectra with the vibrational spectra of some siloxane derivatives reveals strong effects of silicon substituents on the Si O Si symmetric and antisymmetric stretchings. The Si O Si siloxane bridge group plays a key role in the properties of the HMDS molecule and may also account for some important silicone polymer properties such as their very low glass transition, their high compressibility, and their low surface tension. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The recent assignment of the vibrational spectrum of the quasilinear molecule HCNO revealed several near coincidences between vibrational energy levels involving the two bending modes, ν4 (skeletal bending mode) and ν5 (HCN-bending mode), and the lowest-lying stretching mode, ν3 (NO stretching mode). By considering the correlation between the energy levels of a linear and a bent molecular model of HCNO, it is seen that resonance interactions which would be of third or higher order in a linear molecule Hamiltonian would be of first or second order in the Hamiltonian of a bent molecule, and thus might be significant in the quasilinear molecule HCNO. In this way we were able to identify the type of observed interaction occurring between three pairs of nearly coincident levels, (00010, 00002), (00020, 00012), and (00100, 00004). Anomalous centrifugal distortion effects had been observed and reported earlier for the pure rotational transitions arising from molecules in the 00010, 00020, and 00002 levels. Rotational transitions arising from molecules in the 00004 and 00100 vibrational states of HCNO and the 00100 state of DCNO are reported here for the first time. For two pairs of levels, (00010, 00002) and (00100, 00004), we could determine the magnitude of the coefficients of the interaction matrix elements from an analysis of the centrifugal distortion effects.  相似文献   

19.
The ability of different carbon allotropes surfaces as potential substrates for enhanced Raman spectroscopy is analysed theoretically and the factors responsible of the Raman‐enhancing mechanism deeply scrutinised. Our analysis is based on the partition of the Raman tensor into molecule and surface terms, which leads to three different contributions to the Raman activity (‘molecule’, ‘surface’ and ‘intermolecular’). Both static and pre‐ resonance conditions are considered in our analysis of the Raman spectra of pyridine adsorbed on model planar and curved surfaces and the three contributions to the Raman activity obtained separately. At static conditions, there is a general decrease in the Raman activity of vibrational modes associated to the molecule, proportional to the strength of the molecule–surface interaction. This stems from a reduction of the polarizability of pyridine upon its adsorption on the carbon surface. Under pre‐resonance conditions, the surface contributes significantly to the Raman activity of the pyridine vibrational modes, even if the electronic transition involves exclusively energy levels from the surface. This is because of small vibrational couplings between molecular and surface modes which are negligible in metallic surface‐like silver. It suggests also the possibility of finding similar effects in metallic surface built from lighter atoms like silicon or aluminium. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Infrared four-wave mixing experiments performed upon deuterated amorphous silicon layers (a-Si:D) reveal profound differences in the dynamics of Si-D stretch vibrations compared to those of analogous Si-H vibrational modes in hydrogenated amorphous silicon (a-Si:H). Remarkably, transient-grating measurements of the population decay rate of the Si-D vibrations show single-exponential decay directly into collective modes of the a-Si host, bypassing the local bending modes of the defect into which the Si-H vibrations decay. Photon-echo measurements of the vibrational dephasing suggest at low temperature contributions from TO nonequilibrium phonons and at elevated temperatures elastic phonon scattering of TA phonons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号