首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
By using 2'-hydroxyacetophenoxime, a new family of complexes with an [Mn(III)(2)Mn(IV)(3)Ln(5)O(5)] core was obtained with Ln = Tm (1), Lu (2), and Yb (3). Heterometallic Mn/Tm and Mn/Lu combinations have had no precedence so far. Studies of the magnetic properties indicate the presence of intracomplex antiferromagnetic interactions in 1 and 3, as well as a dominating ferromagnetic interaction between Mn(III) and Mn(IV) spins in 2, leading to an S(T) = 5/2 ground state.  相似文献   

2.
From the reaction of [Mn(III)(3)(micro-O)(micro-CH(3)CO(2))(6)]CH(3)CO(2) (manganese(III) acetate) and 2-anilino-4,6-di-tert-butylphenol (1:3) in methanol under anaerobic conditions, dark brown-black crystals of [Mn(III)(L(ISQ))(2)(L(AP))] (1) were obtained in approximately 30% yield. (L(AP))(-) represents the closed-shell o-aminophenolate(-) form of the above ligand, and (L(ISQ))(-) is the monoanionic pi radical form o-iminobenzosemiquinonate(-) (S(rad) = 1/2). Complex 1 can be deprotonated at the (L(AP))(-) ligand and one-electron-oxidized by air, yielding crystals of [Mn(IV)(L(ISQ))(2)(L(AP)-H)] (2), where (L(AP)-H)(2-) represents the closed-shell, dianionic o-amidophenolate(2-) form of the above ligand. The structures of 1 and 2 have been determined by X-ray crystallography at 100 K. The protonation and oxidation levels of the ligands and of the metal ions have been unequivocally established: both complexes contain two pi radical ligands, 1 contains a Mn(III) ion, and 2 contains a Mn(IV) ion. The spins of the radicals (S(rad) = 1/2) couple strongly antiferromagnetically with the d(4) and d(3) configuration of the Mn ions in 1 and 2, respectively, yielding the observed ground states of S = 1 for 1 and S = (1)/(2) for 2. This has been established by temperature-dependent susceptibility measurements (2-300 K) and S- and X-band EPR spectroscopy.  相似文献   

3.
Two cyano-bridged tetranuclear complexes composed of Mn(III) salen (salen = N,N'-ethylene bis(salicylideneiminate)) and hexacyanometalate(III) (M = Fe, Cr) in a stoichiometry of 3:1 have been selectively synthesized using {NH2(n-C12H25)2}3[M(III)(CN)6] (M(III) = Fe, Cr) starting materials: [{Mn(salen)(EtOH)}3{M(CN)6}] (M = Fe, 1; Cr, 2). Compounds 1 and 2 are isostructural with a T-shaped structure, in which [M(CN)6]3- assumes a meridional-tridentate building block to bind three [Mn(salen)(EtOH)]+ units. The strong frequency dependence and observation of hysteresis on the field dependence of the magnetization indicate that 1 is a single-molecule magnet.  相似文献   

4.
5.
The electrochemical behavior of [trans-RuCl(4)L(DMSO)](-) (A) and [trans-RuCl(4)L(2)](-) (B) [L = imidazole (Him), 1,2,4-triazole (Htrz), and indazole (Hind)] complexes has been studied in DMF, DMSO, and aqueous media by cyclic voltammetry and controlled potential electrolysis. They exhibit one single-electron Ru(III)/Ru(II) reduction involving, at a sufficiently long time scale, metal dechlorination on solvolysis, as well as, in organic media, one single-electron reversible Ru(III)/Ru(IV) oxidation. The redox potential values are interpreted on the basis of the Lever's parametrization method, and particular forms of this linear expression (that relates the redox potential with the ligand E(L) parameter) are proposed, for the first time, for negatively (1-) charged complexes with the Ru(III/II) redox couple center in aqueous phosphate buffer (pH 7) medium and for complexes with the Ru(III/IV) couple in organic media. The E(L) parameter was estimated for indazole showing that this ligand behaves as a weaker net electron donor than imidazole or triazole. The kinetics of the reductively induced stepwise replacement of chloride by DMF were studied by digital simulation of the cyclic voltammograms, and the obtained rate constants were shown to increase with the net electron donor character (decrease of E(L)) of the neutral ligands (DMSO < indazole < triazole < imidazole) and with the basicity of the ligated azole, factors that destabilize the Ru(II) relative to the Ru(III) form of the complexes. The synthesis and characterization of some novel complexes of the A and B series are also reported, including the X-ray structural analyses of (Ph(3)PCH(2)Ph)[trans-RuCl(4)(Htrz)(DMSO)], [(Ph(3)P)(2)N][trans-RuCl(4)(Htrz)(DMSO)], (H(2)ind)[trans-RuCl(4)(Hind)(DMSO)], and [(Hind)(2)H][trans-RuCl(4)(Hind)(2)].  相似文献   

6.
We report the geometrical features and electronic structures of di-mu-oxo-bridged Mn-Mn binuclear complexes with H2O ligands [Mn2O2(H2O)8]q+ in the iso- and mixed-valence oxidation states. All of the combinations among Mn(II), Mn(III), and Mn(IV) ions are considered the oxidation states of the Mn-Mn center, and the changes in molecular structure induced by the different electron configurations of Mn-based orbitals are investigated in relation to the oxygen-evolving complex (OEC) of photosystem II. The stable geometries of complexes are determined by using the hybrid-type density functional theory for both of the highest- and lowest-spin couplings between Mn sites, and the lowest-spin-coupled states are energetically more favorable than the highest-spin-coupled states except in the case of the complexes with the Mn(II) ion. The coordination positions of H2O ligands at the Mn(II) site tend to shift from the octahedral positions in contrast to those at the Mn(III) and Mn(IV) sites. The shape of the Mn2O2 core and the distances between the Mn ions and the H2O ligands vary depending on the electron occupations of the octahedral eg orbitals on the Mn site with an antibonding nature for the Mn-ligand interactions, indicating the trend as Mn(II)-O > Mn(III)-O and Mn(IV)-O, O-Mn(II)-O > O-Mn(III)-O > O-Mn(IV)-O among the iso-valence Mn2O2 cores, and O-Mn(lower)-O < O-Mn(higher)-O within the mixed-valence Mn2O2 core, and as Mn(II)-OH2 and Mn(III)-OH2 > Mn(IV)-OH2 for the axial H2O ligand. The optimized geometries of model complexes are compared with the X-ray structure of the OEC, and it is suggested that the cubane-like Mn cluster of the active site may not contain a Mn(II) ion. The effective exchange integrals are estimated by applying the approximate spin projection to clarify the magnetic coupling between Mn sites, and the superexchange pathways through the di-mu-oxo bridge are examined on the basis of the singly occupied magnetic orbitals derived from the singlet-coupled natural orbitals in the broken-symmetry state. The comparisons of the calculated results between [Mn2O2(H2O)8]q+ in this study and [Mn2O2(NH3)8]q+ reported by McGrady et al. suggest that the symmetric pathways are dominant to the exchange coupling constant, and the crossed pathway would be less important for the former than it would for the latter in the Mn(III)-Mn(III), Mn(IV)-Mn(IV), and Mn(III)-Mn(IV) oxidation states.  相似文献   

7.
Oxalate-based magnets have been known with several different crystallographic structures, from 1D to 3D, but with all of them based in metal ions with octahedral coordination. In this article we report a new bidimensional oxalate-bridged bimetallic magnet where the divalent metal appears heptacoordinated, which has strong effects in the structure and properties of this materials.  相似文献   

8.
The electronic structures of two formally isoelectronic transition-metal dithiolato complexes [Fe(L)2]2- (1) and [Co(L Bu)2]1- (2) both possessing a spin triplet ground state (St=1) have been investigated by various spectroscopic and density functional methods; H2L Bu represents the pro-ligand 3,5-di-tert-butylbenzene-1,2-dithiol and H2L is the corresponding unsubstituted benzene-1,2-dithiol. An axial zero-field splitting (D) of +32 cm(-1) for 2 has been measured independently by SQUID magnetometry, far-infrared absorption, and variable-temperature and variable-field (VTVH) magnetic circular dichroism spectroscopies. A similar D value of +28 cm(-1) is obtained for 1 on the basis of VTVH SQUID measurements. The absorption spectra of 1 and 2 are found, however, to be very different. Complex 1 is light yellow in color with no intense transition in the visible region, whereas 2 is deep blue. DFT calculations establish that the electronic structures of the [Fe(L)2](2-) and [Co(L)2]1- anions are very different and explain the observed differences in their absorption spectra. On the basis of these spectroscopic and theoretical analyses, 1 is best described as containing an intermediate spin FeII ion, whereas for the corresponding cobalt complex, oxidation states describing a d6 (CoIII) or d7 (CoII) electron configuration cannot be unambiguously assigned. The physical origin of the large zero-field splitting in both 1 and 2 is found to be due to the presence of low-energy spin-conserved d-d excitations which lead to a large Dzz through efficient spin-orbit coupling. Differential covalency effects appear to be of limited importance for this property.  相似文献   

9.
Ferromagnetic exchange between the three Mn ions in the complex [Mn3(Hcht)2(bpy)4](ClO4)3 leads to a spin ground state of S = 7; single crystal studies reveal the temperature and sweep rate dependent hysteresis loops expected for a single-molecule magnet.  相似文献   

10.
Electronic and geometrical structures of Mn(3)-Mn(10) together with their singly negatively and positively charged ions are computed using density functional theory with generalized gradient approximation. The ground-state spin multiplicities in the neutral series are 16, 21, 4, 9, 6, 5, 2, and 5, for Mn(3)-Mn(10), respectively. Thus, there is a transition from a ferromagnetic ground state to a ferrimagnetic ground state at Mn(5). The energy difference between ferrimagnetic and ferromagnetic states in Mn(n) grows rapidly with increasing n and exceeds 2 eV in Mn(10). The corresponding change from ferro- to ferrimagnetic ground state occurs at Mn(6)(-) and Mn(3)(+) in the anionic and cationic series, respectively. Beginning with Mn(6), the ion spin multiplicities differ from that of the neutral by +/-1 (i.e., they obey the empirical "+/-1 rule"). We found that the energy required to remove an Mn atom is nearly independent of the charge state of an Mn(n) cluster and the number of atoms in the cluster, except for Mn(3). The results of our calculations are in reasonable agreement with experiment, except for the experimental data on the magnetic moments per atom, where, in general, we predict smaller values than the experiment.  相似文献   

11.
Two new polynuclear heterometallic cluster complexes with [Mn(III)(3)M(II)Na] (M = Mn, Ca) core were synthesized using two in situ formed Schiff bases. The compounds were structurally characterized by single crystal X-ray analysis. The compound with [Mn(III)Ca(II)Na] appeared to catalyse water oxidation which was followed by using Clark electrode and online mass spectrometry.  相似文献   

12.
13.
New ways of the covalent immobilization of Mn(III) and Mo(IV) Salen complexes on a mesoporous silica support to produce a stable heterogeneous catalyst for epoxidation reactions are reported. Peptide and ester interactions were employed to anchor the metal Salen complex on the organo-modified silica framework. Electrospray MS, FTIR, TGA, ICP-OES and elemental analysis were used for quantitative and qualitative analyses of the immobilized Salen complexes. The results confirm the location of the metal Salen complex inside the mesopores covalently attached to the silica framework.  相似文献   

14.
The TaSi(n) (n=1-13) clusters with doublet, quartet, and sextet spin configurations have been systematically investigated by a relativistic density functional theory with the generalized gradient approximation available in Amsterdam density functional program. The total bonding energies, equilibrium geometries, Mulliken populations as well as Hirshfeld charges of TaSi(n) (n=1-13) clusters are calculated and presented. The emphasis on the stabilities and electronic properties is discussed. The most stable structures of the small TaSi(n) (n=1-6) clusters and the evolutional rule of low-lying geometries of the larger TaSi(n) (n=7-13) clusters are obtained. Theoretical results indicate that the most stable structure of TaSi(n) (n=1-6) clusters keeps the similar framework as the most stable structure of Si(n+1) clusters except for TaSi(3) cluster. The Ta atom in the lowest-energy TaSi(n) (n=1-13) isomers occupies a gradual sinking site, and the site moves from convex, to flatness, and to concave with the number of Si atom varying from 1 to 13. When n=12, the Ta atom in TaSi(12) cluster completely falls into the center of the Si frame, and a cagelike TaSi(12) geometry is formed. Meanwhile, the net Mulliken and Hirsheld populations of the Ta atom in the TaSi(n) (n=1-13) clusters vary from positive to negative, manifesting that the charges in TaSi(n) (n>/=12) clusters transfer from Si atoms to Ta atom. Additionally, the contribution of Si-Si and Si-Ta interactions to the stability of TaSi(n) clusters is briefly discussed. Furthermore, the investigations on atomic averaged binding energies and fragmentation energies show that the TaSi(n) (n=2,3,5,7,10,11,12) clusters have enhanced stabilities. Compared with pure silicon clusters, a universal narrowing of highest occupied molecular orbital-lowest unoccupied molecular orbital gap in TaSi(n) clusters is found.  相似文献   

15.
Yeung WF  Lau PH  Lau TC  Wei HY  Sun HL  Gao S  Chen ZD  Wong WT 《Inorganic chemistry》2005,44(19):6579-6590
The synthesis, structures, and magnetic properties of four cyano-bridged M(II)Ru(III)2 compounds prepared from the paramagnetic Ru(III) building blocks, trans-[Ru(salen)(CN)2]- 1 [H2salen = N,N'-ethylenebis(salicylideneimine)] and trans-[Ru(acac)2(CN)2]- (Hacac = acetylacetone), are described. Compound 2, {Mn(CH3OH)4[Ru(salen)(CN)2]2}.6CH3OH.2H2O, is a trinuclear complex that exhibits antiferromagnetic coupling between Mn(II) and Ru(III) centers. Compound 3, {Mn(H2O)2[Ru(salen)(CN)2]2.H2O}n, has a 2-D sheetlike structure that exhibits antiferromagnetic coupling between Mn and Ru, leading to ferrimagnetic-like behavior. Compound 4, {Ni(cyclam)[Ru(acac)2(CN)2]2}.2CH3OH.2H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane), is a trinuclear complex that exhibits ferromagnetic coupling. Compound 5, {Co[Ru(acac)2(CN)2]2}n, has a 3-D diamond-like interpenetrating network that exhibits ferromagnetic ordering below 4.6 K. The density functional theory (DFT) method was used to calculate the molecular magnetic orbitals and the magnetic exchange interaction between Ru(III) and M(II) (Mn(II), Ni(II)) ions.  相似文献   

16.
Cao X  Li Q  Moritz A  Xie Z  Dolg M  Chen X  Fang W 《Inorganic chemistry》2006,45(8):3444-3451
Newly developed relativistic energy-consistent 5f-in-core actinide pseudopotentials and corresponding (7s6p5d1f)/[5s4p3d1f] basis sets in the segmented contraction scheme, combined with density functional theory methods, have been used to study the molecular structure and chemical properties of selected actinide(III) motexafins (An-Motex2+, An = Ac, Cm, Lr). Structure and stability are discussed, and a comparison to the lanthanide(III) motexafins (Ln-Motex2+, Ln = La, Gd, Lu) is made. The actinide element is found to reside above the mean N5 motexafin plane, and the larger the cation, the greater the observed out-of-plane displacement. It is concluded that the actinium(III), curium(III), and lawrencium(III) cations are tightly bound to the macrocyclic skeleton, yielding stable structures. However, the calculated metal-ligand gas-phase binding energy for An-Motex2+ is about 1-2 eV lower than that of Ln-Motex2+, implying a lower stability of An-Motex2+ compared to Ln-Motex2+. Results including solvent effects imply that Ac-Motex2+ is the most stable complex in aqueous solution and should be the best candidate for experimentalists to get stable actinide(III) motexafin complexes.  相似文献   

17.
A series of [3 x 3] Mn(II)(9), antiferromagnetically coupled, alkoxide-bridged, square grid complexes, derived from a group of "tritopic" dihydrazide ligands, is described. The outer ring of eight Mn(II) centers in the grids is isolated magnetically from the central Mn(II) ion, leading to an S = 0 ground state for the ring, and an S = 5/2 ground state overall in each case. Exchange in the Mn(II)(8) ring can be represented by a 1D chain exchange model. Rich electrochemistry displayed by these systems has led to the production of Mn(II)/Mn(III) mixed-oxidation-state grids by both electrochemical and chemical means. Structures are reported for [Mn(9)(2poap)(6)](C(2)N(3))(6).10H(2)O (1), [Mn(9)(2poap)(6)](2)[Mn(NCS)(4)(H(2)O)](2)(NCS)(8).10H(2)O (2), [Mn(9)(2poapz)(6)](NO(3))(6).14.5H(2)O (3), [Mn(9)(2popp)(6)](NO(3))(6).12H(2)O (4), [Mn(9)(2pomp)(6)](MnCl(4))(2)Cl(2).2CH(3)OH.7H(2)O (5), and [Mn(9)(Cl2poap)(6)](ClO(4))(9).7H(2)O (6). Compound 1 crystallized in the tetragonal system, space group P4(2)/n, with a = 21.568(1) A, c = 16.275(1) A, and Z = 2. Compound 2 crystallized in the triclinic system, space group P, with a = 25.043(1) A, b = 27.413(1) A, c = 27.538(2) A, alpha = 91.586(2) degrees, beta = 113.9200(9) degrees, gamma = 111.9470(8) degrees, and Z = 2. Compound 3 crystallized in the triclinic system, space group P, with a = 18.1578(12) A, b = 18.2887(12) A, c = 26.764(2) A, alpha = 105.7880(12) degrees, beta = 101.547(2) degrees, gamma = 91.1250(11) degrees, and Z = 2. Compound 4 crystallized in the tetragonal system, space group P4(1)2(1)2, with a = 20.279(1) A, c = 54.873(6) A, and Z = 4. Compound 5 crystallized in the tetragonal system, space group I, with a = 18.2700(2) A, c = 26.753(2) A, and Z = 2. Compound 6 crystallized in the triclinic system, space group P, with a = 19.044(2) A, b = 19.457(2) A, c = 23.978(3) A, alpha = 84.518(3) degrees, beta = 81.227(3) degrees, gamma = 60.954(2) degrees, and Z = 2. Preliminary surface studies on Au(111), with a Mn(II) grid complex derived from a sulfur-derivatized ligand, indicate monolayer coverage via gold-sulfur interactions, and the potential for information storage at high-density levels.  相似文献   

18.
A study of the structure and the bonding nature of Mg clusters having 2 to 13 atoms has been made using the density functional molecular dynamics method within the local density approximation. The calculated lowest energy structures can be described in terms of a tetrahedron and a trigonal prism. Mg4 and Mg10 are magic clusters and Mg13 is neither an icosahedron nor a cuboctahedron. The bonding nature varies from atom to atom in a cluster and the transition from weakly bonded dimer to bulk like metallic behaviour is oscillatory and slow.  相似文献   

19.
The reactions of manganocene, Cp2Mn, with 2-aminopyridine (L1H) or 2-amino-3-bromo-5-methylpyridine (L2H) give the novel hexanuclear and octanuclear Mn(II) amido cage compounds [Cp2Mn3(L1)4]2 (1) and [Mn8(L2)12(mu 4-O)2] (2); magnetic measurements on which provide a rare insight into the magnetic properties of amido-bridged metal clusters.  相似文献   

20.
毕文华  孙道峰  曹荣  李星  时茜 《中国化学》2004,22(3):271-274
Introduction Recently, many novel polymers with a variety of metal ions have been prepared and structurally characterized owing to the versatility of carboxylate ligands.1-5 Much attention has been devoted to this field partly because polymers of carboxylate ligands are good candidates for the investigation of exchange-coupling interactions between adjacent metal ions. A successful strategy to synthesize these complexes is the reaction of metal salts with properly selected multi-dentate carbox…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号