首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of Cu(I), tricyanomethanide (tcm , C(CN)3-) and L = either hexamethylenetetramine (hmt), 4,4'-bipyridine (bipy) or 1,2-bis(4-pyridyl)ethene (bpe) gives crystals of [Cu(tcm)(hmt)] (1), [Cu(tcm)(bipy)] (2) and [Cu(tcm)(bpe)] x 0.25 bpe x 0.5 MeCN (3), respectively. Crystal structure analysis shows 1-3 all contain closely related puckered (4,4) sheets composed of tetrahedral Cu(I) ions bridged by 2-connecting tcm- and L. The crystal packing, however, varies markedly with L. In 1 the sheets interdigitate in pairs. In 2 the sheets participate in parallel interpenetration in pairs. In 3 guest bpe and MeCN molecules are intercalated in channels formed by the stacking of the sheets.  相似文献   

2.
Neutral trinuclear (triangular) copper(II) complexes of type [Cu3L3] incorporating the 1,4-aryl linked bis-beta-diketonato bridging ligands, 1,1-(1,4-phenylene)-bis(butane-1,3-dione) (H2L2), 1,1-(1,4-phenylene)-bis(pentane-1,3-dione) (H2L3) and 1,1-(1,4-phenylene)-bis(4,4-dimethylpentane-1,3-dione) (H2L4) have been demonstrated to react with selected heterocyclic nitrogen donor bases to generate extended supramolecular architectures whose structures have been confirmed by X-ray diffraction. Thus on reaction with 4,4'-bipyridine (bipy), [Cu3(L2)3] yields polymeric structures of type {[Cu3(L2)3(bipy)(THF)] x 2.75THF}n and {[Cu3(L2)3(bipy)(THF)] x bipy x 0.75THF}(n) while with pyrazine (pyz), {[Cu3(L2)3(pyz)] x 0.5THF}n was obtained. Each of these extended structures contain alternating triangle/linker units in a one-dimensional polymeric chain arrangement in which two of the three copper sites in each triangular 'platform' are formally five-coordinate through binding to a heterocyclic nitrogen atom. Interaction of the multifunctional linker unit hexamethylenetetramine (hmt) with [Cu3(L3)3] afforded an unusual, chiral, three-dimensional molecular framework of stoichiometry [Cu3(L3)3(hmt)]n. The latter incorporates the trinuclear units coordinated to three triply bridging hmt units. In marked contrast to the formation of the above structures incorporating bifunctional linker units and five-coordinate metal centres, the trinuclear platform [Cu3(L2)3] reacts with the stronger difunctional base 1,4-diazabicyclo[2.2.2]-octane (dabco) to yield a highly symmetric trigonal columnar species of type {[Cu3(L4)3(dabco)3] x 3H2O}n in which each copper centre is octahedrally coordinated.  相似文献   

3.
The supramolecular interplay of Me(3)Sn(+) and [M(CN)(2n)](n-) ions (n=3 and 4) with either 4,4'-bipyridine (bpy), trans-bis(4-pyridyl)ethene (bpe) or 4cyanopyridine (cpy) in the presence of H(2)O has been investigated for the first time. Crystal structures of the six novel assemblies: [(Me(3)Sn)(4)Mo(IV)(CN)(8).2 H(2)O.bpy] (8) and [(Me(3)Sn)(4)Mo(IV)(CN)(8).2 H(2)O.bpe] (8 a; isostructural), [(Me(3)Sn)(3)Fe(III)(CN)(6).4 H(2)O.bpy] (9), [(Me(3)Sn)(3)Co(III)(CN)(6).3 H(2)O.3/2 bpy] (10), [(Me(3)Sn)(4)Fe(II)(CN)(6).H(2)O.3/2 bpy] (11), and [(Me(3)Sn)(4)Ru(II)(CN)(6).2 H(2)O.3/2 cpy] (12) are presented. H(2)O molecules are usually coordinated to tin atoms and involved in two significant O-H.N hydrogen bonds, wherein the nitrogen atoms belong either to bpy (bpe, cpy) molecules or to M-coordinated cyanide ligands. Extended supramolecular assemblies such as -CN-->Sn(Me(3))<--O(H.)H.N(L)N.HO(H.)-->Sn(Me(3))<--NC- (L=bpy, bpe or cpy) function as efficient metal connectors (or spacers) in the structures of all six compounds. Only in the three-dimensional framework of 11, one third of all bpy molecules is involved in coordinative N-->Sn bonds. The supramolecular architecture of 9 involves virtually non-anchored (to cyanide N atoms), Me(3)Sn(+) units with a strictly planar SnC(3) skeleton, and two zeolitic H(2)O molecules. Pyrazine (pyz) is surprisingly reluctant to afford assemblies similar to 8-12, however, the genuine host-guest systems [(Me(3)Sn)(4)Mo(CN)(8).0.5pyz] and [(Me(3)Sn)(4)Mo(CN)(8).pym] (pym=pyrimidine) could be isolated and also structurally characterized.  相似文献   

4.
The reaction of metal ions, flexible aliphatic dicarboxylates and rigid bidentate linear ligands under mild conditions in water afford four novel metal-organic coordination polymers, [Cd(mu-mal)(mu-pyz)(0.5)(H(2)O)](n) 1 (mal = malonate dianion, pyz = pyrazine), [Cd(2)(mu-suc)(2)(mu-pyz)(H(2)O)(2)](n) 2 (suc = succinate dianion), and ([M(mu-bipy)(H(2)O)4][suc].4H(2)O)(n)(M = Co, 3, M = Zn, 4, bipy = 4,4'-bipyridine). The molecular structures of 1-4 have been established by single-crystal X-ray crystallography. 1 is a 3D network being composed of layers of octahedrally coordinated Cd atoms bridged by malonate anions in syn-anti configurations within the layers and pyz molecules between layers. Unlike that in 1, each Cd atom in 2 displays uncommon pentagonal-bipyramidal geometry to form 2D infinite grid sheets with square grid dimensions of ca. 7.936 x 7.936 [Angstrom]. Both 3 and 4 exhibit 1D linear -M-bipy-M-bipy- chain polymers, and these chains were packed as ...ABCABC... layered structures. The bridging succinate ligands in 2 adopt the syn-anti mode with a torsion angle of 60.8(7) degrees, while the solvated succinate ligands in 3 and 4 adopt the anti-anti mode with a torsion angle of 180.0 degrees. To our knowledge, compound 2 represents the first example of flexible self-assembled succinate-pyrazine mixed bridging ligand coordination network. 3 and 4 are the first two cases of succinate-bipy polymers with non-coordinated succinate. The magnetic behavior for 3 was studied in the temperature range of 5-300 K. The result indicates the occurrence of a weak antiferromagnetic coupling between the cobalt(II) ions.  相似文献   

5.
In this paper, ten new silver compounds, namely [Ag(bipy)](L1).H2O (1), [Ag(bipy)](L2).2H2O (2), [Ag2(bipy)2(H2O)2](L3).H2O (3), [Ag(L4)(bipy)].H2O (4), [Ag(L5)(bipy)] (5), [Ag(L6)(bipy)].0.5CH3CN (6), [Ag3(L7)2(bipy)2].2(H2O) (7), [Ag2(L8)(bipy)1.5(H2O)].H2O (8), [Ag2(L9)(bipy)2(H2O)2] (9) and [Ag3(L10)(bipy)2][(bipy)(H2O)2].(H2O)3.5 (10) (where bipy = 4,4'-bipyridine, L1 = 6-amino-1-naphthalenesulfonate anion, L2 = 2-naphthalenesulfonate anion, L3 = sulfosalicylate anion, L4 = p-aminobenzenesulfonate anion, L5 = 4-dimethyaminoazobenzenen-4'-sulfonate anion, L6 = 2,5-dichloro-4-amino-benzenesulfonate anion, L7 = 8-hydroxyquinoline-5-sulfonate anion, L8 = 2-nitroso-1-naphthol-4-sulfonate anion, L9 = 2,6-naphthalenedisulfonate anion and L10 = 1,3,5-naphthalenetrisulfonate anion), have been synthesized and characterized by elemental analyses, IR spectroscopy and X-ray crystallography. In compounds 1-6, Ag(I) centers are linked by bipy ligands to form 1D Ag-bipy chain structures, in which the sulfonate anions of compounds 1-3 act as counter ions. The sulfonate anions of compounds 4 and 5 connect Ag-bipy chains to form 1D double chain structures, respectively. The sulfonate anions of compound 6 connect Ag-bipy chains to form a 2D layer structure. Unexpectedly, compound 7 shows a hinged chain structure, and these chains interlace with each other through hydrogen bonds and pi-pi interactions to generate a 3D structure with channels along the c axis. Compounds 8 and 9 show 1D ladder-like structures. In compound 10, the Ag-bipy chains are connected by sulfonate anions to generate a 3D poly-threaded network, in which an isolated Ag-bipy chain is inserted. The results indicate that the anionic sulfonate-containing co-ligands play an important role in the final structures of the Ag(I) complexes. Additionally, the luminescent properties of these compounds were also studied.  相似文献   

6.
Li FF  Ma JF  Song SY  Yang J  Liu YY  Su ZM 《Inorganic chemistry》2005,44(25):9374-9383
This article represents a systematical examination of the structures of silver(I) sulfonates incorporating neutral ligands. To survey the influence of the properties of neutral ligands on the structures of silver(I) sulfonates, three kinds of sulfonate anions (L1=1-naphthalenesulfonate, L2=p-toluenesulfonate, and L3=1, 3, 6, 8-pyrenetetrasulfonate) and three kinds of neutral ligands (pyrazine, Pyr, a divergent bidentate ligand; hexamethylenetetramine, hmt, a divergent tetradentate ligand; and beta-picoline, Pic, a monodentate ligand) were selected for study, and five novel silver(I) sulfonates containing neutral ligands have been synthesized: [Ag(L1)(Pyr)].H2O, Ag(L2)(Pyr), Ag4(L3)(Pyr)4(H2O)2, [Ag(L1)(hmt)].H2O, and Ag(L1)(Pic)2. The crystal structures have been determined by single-crystal X-ray diffraction, and these compounds show a variety of structures with different dimensionalities. Moreover, the luminescent properties of compounds and are also discussed.  相似文献   

7.
Reaction of copper(II) tetrazolate-5-carboxylate with different neutral N-donor spacer ligands under hydrothermal conditions leads to the formation of five new coordination polymers, [Cu(tzc)(pyz)(0.5)(H(2)O)(2)](n)·H(2)O (1), [Cu(tzc)(pyz)](n) (2), [Cu(tzc)(pym)(H(2)O)](n) (3), [Cu(tzc)(dpe)(0.5)(H(2)O)](n) (4) and [Cu(tzc)(azpy)(0.5)(H(2)O)](n) (5) (tzc = tetrazolate-5-carboxylate, pyz = pyrazine, pym = pyrimidine, dpe = 1,2-di(4-pyridyl)ethylene and azpy = 4,4'-azopyridine). All five structures were characterized by X-ray single-crystal measurements and bulk material can be prepared phase pure in high yields. The crystal structures of the hydrates 1, 3, 4 and 5 show dimeric [Cu(2)(N(tzc)-N(tzc))(2)] building units formed by μ(2)-N1,O1:N2 bridging tzc ligands as the characteristic structural motif. These six-membered entities in 1, 4 and 5 are connected by μ(2)-N,N' bridging N-donor ligands into 1D chains and in 3 into 2D layers. In the crystal structure of compound 2 adjacent Cu(II) cations are connected by μ(2)-N1,O1:N4,O2 bridging tzc ligands into chains, which are further connected by μ(2)-N,N' bridging pyz ligands forming 2D layers. Extensive hydrogen bonds in all compounds play an important role in the construction of their supramolecular networks. Investigations of their thermal properties reveal water release upon heating according to the formation of anhydrates before starting decomposing above 220 °C. Furthermore, the magnetic properties have been studied leading to consistent global antiferromagnetic exchange interactions with coupling constants of J = 3 ± 1 cm(-1) and long-range antiferromagnetic ordering states at lower temperatures.  相似文献   

8.
We have used quasielastic neutron scattering to probe the solid-state ligand dynamics in the coordination polymer Mn[N(CN)(2)](2)(pyz) [pyz = pyrazine] which has double-interpenetrating 3D lattices. A reversible structural phase transition occurs at 410 K as shown by neutron spectroscopy and differential scanning calorimetry. The origin of this transition is linked to rotational dynamics associated with the bridging pyz ligands. At 425 K, the pyrazine ring motion can be solely regarded as a 180 degrees reorientational jump about the axis defined by the Mn-N coordinative bonds, occurring with a correlation time of approximately 70 ps. This model can be extended to the 200-410 K temperature region using high-resolution backscattering spectroscopy to measure an identical motion on the time scale of nanoseconds with an activation energy of 24 +/- 2 kJ mol(-1). In contrast, no quasielastic scattering is seen for the 2D layered variant beta-Cu[N(CN)(2)](2)(pyz), owing to its more compact layer packing motif. Importantly, this work represents the very first study of solid-state rotational dynamics in an interpenetrating lattice structure.  相似文献   

9.
[Cp*Rh(eta1-NO3)(eta2-NO3)] (1) reacted with pyrazine (pyz) to give a dinuclear complex [Cp*Rh(eta1-NO3)(mu-pyz)(0.5)]2.CH2Cl2(3.CH2Cl2). Tetranuclear rectangles of the type [Cp*Rh(eta1,mu-X)(mu-L)(0.5)]4(OTf)4(4a: X = N3, L = bpy; 4b: X = N3, L = bpe; 4c: X = NCO, L = bpy) were prepared from [Cp*Rh(H2O)3](OTf)2 (2), a pseudo-halide (Me3SiN3 or Me3SiNCO), and a linear dipyridyl [4,4'-bipyridine (bpy) or trans-1,2-bis(4-pyridyl)ethylene (bpe)] by self-assembly through one-pot synthesis at room temperature. Treating complex with NH4SCN and dipyridyl led to the formation of dinuclear rods, [Cp*Rh(eta1-SCN)3]2(LH2) (5a: L = bpy; 5b: L = bpe), in which two Cp*Rh(eta1-SCN)3 units are connected by the diprotonated dipyridyl (LH2(2+)) through N(+)-H...N hydrogen bonds. Reactions of complex 2 with 1-(trimethylsilyl)imidazole (TMSIm) and dipyridyl (bpy or bpe) also produced another family of dinuclear rods [Cp*Rh(ImH)3]2.L (6a: L = bpy; 6b: L = bpe). Treating 1 and 2 with TMSIm and NH4SCN (in the absence of dipyridyl) generated a 1-D chain [Cp*Rh(ImH)3](NO3)2 (7) and a 1-D helix [Cp*Rh(eta1-SCN)2(eta1-SHCN)].H2O (8.H2O), respectively. The structures of complexes 3.CH2Cl2, 4a.H2O, 4c.2H2O, 5b, 6a, 7 and 8.H2O were determined by X-ray diffraction.  相似文献   

10.
Wang QM  Mak TC 《Inorganic chemistry》2003,42(5):1637-1643
The first successful attempt to construct supramolecular entities via incorporation of bifunctional exodentate ligands into the silver acetylide system is reported. Coordination assembly with nitrogen-donor spacers led to the formation of five distinct supramolecular complexes, namely [(Ag(2)C(2))(AgCF(3)CO(2))(4)(pyz)(2)](n) (1), [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(CF(3)CO(2))(4)(DabcoH)(4)(H(2)O)(1.5)].H(2)O (2), [(Ag(2)C(2))(AgCF(3)CO(2))(4)(CF(3)CO(2))(bpaH)](n)() (3), [(Ag(2)C(2))(AgCF(3)CO(2))(8)(bpa)(4)](n) (4), and [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(bppz)(2)(H(2)O)](n) (5) (pyz = pyrazine; Dabco = 1,4-diazabicyclo[2.2.2]octane; bpa = 1,2-bis(4-pyridyl)ethane; bppz = 2,3-bis(2-pyridyl)pyrazine). Complex 1 is a three-dimensional framework composed of silver columns cross-linked by pyrazine bridges, whereas 2 contains a discrete supermolecule whose core is a Ag(14) double cage that is completely surrounded by trifluoroacetate, aqua, and terminal monoprotonated Dabco ligands. Complex 3 has a branched-tree architecture with one terminal of the bpa ligand attached to the silver backbone and the other exposed and protonated. In 4, neutral decanuclear [(Ag(2)C(2))(AgCF(3)CO(2))(8)] units are interlinked by bpa spacers adopting both gauche and anti conformations to generate a layer structure. Another two-dimensional network was formed with bppz serving as an angular bridging ligand in 5, in which the building unit is a silver quadruple cage containing 24 silver atoms.  相似文献   

11.
New examples of adducts between di- (and, in one instance, tetra-) functional nitrogen ligands and planar 'platform-like' dinuclear copper(II) complexes, [Cu2L2], incorporating the 1,3-aryl linked bis-beta-diketonato bridging ligand 1,1'-(1,3-phenylene)-bis(4,4-dimethylpentane-1,3-dione) (H2L) have been synthesised. The X-ray structures of six adduct species are reported. The interaction of [Cu2(L)2] with the ditopic ligand aminopyrazine (apyz) yielded the sandwich-like tetranuclear species [(Cu2L2(apyz))2]. A variable-temperature magnetochemical investigation of this product indicated weak antiferromagnetic coupling between the (five-coordinate) copper centres, mediated by the 2-aminopyrazine linkers. An analogous structure, [(Cu2L2(dabco))2] (dabco=1,4-diazabicyclo[2.2.2]octane), was generated when dabco was substituted for aminopyrazine while use of 4,4'-dipyridyl sulfide (dps) and 4,4'-(1,3-xylylene)-bis(3,5-dimethylpyrazole) (xbp) as the ditopic 'spacer' ligands resulted in polymeric species of type [Cu2L2(dps)]n and [Cu2L2(xbp)]n, respectively. These latter species exist as one-dimensional chain structures in which copper(II) centres on different dinuclear platforms are linked in a 'zigzag' fashion. In contrast, with 2,2'-dipyridylamine (dpa) a discrete complex of type [Cu2L2(dpa)2] formed in which one potential pyridyl donor from each 2,2'-dipyridylamine ligand remains uncoordinated. The use of the potentially quadruply-bridging hexamethylenetetramine (hmt) ligand as the linker unit was found to give rise to an unusual two-dimensional polymeric motif of type [(Cu2(L2)2)3(hmt)2]n. The product takes the form of a (6,3) network, incorporating triply bridging hexamethylenetetramine units.  相似文献   

12.
Four new [AuBr(2)(CN)(2)](-)-based coordination polymers, Zn(pyz)(NCMe)(2)[AuBr(2)(CN)(2)](2) (1; pyz = pyrazine), Co(pyz)[AuBr(2)(CN)(2)](2)·H(2)O (2) and [M(bipy)(2)(AuBr(2)(CN)(2))][(n)Bu(4)N][AuBr(2)(CN)(2)](2) (bipy = 4,4'-bipyridine), where M = Co (5) and Zn (6), were synthesized and three of them structurally characterized. 1 forms 1-D chains connected by pyz ligands while isostructural 5 and 6 form 3-D frameworks via [AuBr(2)(CN)(2)](-) and bipy linkers. Aqueous suspensions of 2, 5 and 6 or their precursors in situ (preferred) were heated hydrothermally to 125 °C, triggering the reductive elimination of bromine from the Au(III) centres, which yielded the [Au(CN)(2)](-)-based coordination polymers M(pyz)[Au(CN)(2)](2), where M = Zn (3) or Co (4) and Zn(bipy)[Au(CN)(2)][Au{Br(0.68)(CN)(0.32)}CN] (7), or a mixture of cyanoaurate(I)-containing products in the case of 5 and 6. The structural characterization of 3 revealed a [Au(CN)(2)](-)/pyz-based framework similar to previously reported Cu(pyz)[Au(CN)(2)](2), whereas 7 formed an intricate network consisting of individual 2-D networks held together by AuAu interactions and featuring the rare [AuBrCN](-) unit. The kinetics of the thermally-induced reductive elimination of Br(2) from K[AuBr(2)(CN)(2)] in 1-BuOH yielded a t(?) of approx. 10 min to 4 h from 98 to 68 °C, and activation parameters of ΔH(?) = 131(15) kJ mol(-1) and ΔS(?) = 14.97(4) kJ K(-1)mol(-1), indicating that the elimination of the halogen provides the highest barrier to activation.  相似文献   

13.
Song L  Li J  Lin P  Li Z  Li T  Du S  Wu X 《Inorganic chemistry》2006,45(25):10155-10161
Reactions of [WES3]2- (E = S, O) with CuX (X = NCS, CN, I) in the presence of bix (bix = 1,4-bis(imidazole-1-ylmethyl)benzene) in DMF or CH3CN resulted in the formation of two novel 2D --> 3D interpenetrating coordination polymers [S2W2S6Cu4(bix)2]n (1) and {[WS4Cu4(NCS)2(bix)3].CH3CN}n (2), a noninterpenetrating 3D polymer {[WS4Cu2(bix)].DMF}n (3), and two 2D sheet polymers [WS4Cu3(CN)(bix)]n (4) and {[OWS3Cu3(bix)2][I].DMF.2H2O}n (5), depending on the reaction temperature and the reagents used. Compound 1 contains a hexagonal prism of W2Cu4S6 cluster core, which serves as a 4-connecting node to link equivalent nodes via bix ligands, forming a 2D (4,4) net. In 2, a WCu4S4 core, which also acts as a 4-connecting node, connects the neighboring nodes either through single or double bix bridges, affording a different 2D (4,4) sheet. Inclined interpenetration occurs between two stacks of 2D sheets in the total structure of 1, while 2 involves a parallel interpenetration between the adjacent layers, both creating a 3D network. Compounds 1 and 2 represent the first examples of interpenetrating (4,4) frameworks with clusters as nodes and bidentate pyridyl-based ligands as linkers. Unlike 1 and 2, compound 3 has a noninterpenetrating 3D network, which is composed of the inorganic 1D (WS4Cu2)n chains linked by cis and trans bix ligands. Compound 4 features an inorganic 1D (WS4Cu3)n chain structure, which is linked by CN groups and bix ligands to form an infinite 2D network. Compound 5 is a 2D layer polymer with large inner cavities.  相似文献   

14.
Three new homochiral metal-organic coordination polymers [Cu2camph2dabco] · DMF•2H2O, [Cu2camph2bipy] · 3DMF•2H2O, and [Cu2camph2bpe] · 4DMF•2H2O (H2camph is (+)-camphoric acid, bipy is 4,4’-bipyridyl, bpe is trans-bis(4-pyridyl)ethylene) were synthesized by heating copper(II) nitrate, (+)-camphoric acid, and N-donor ligands of different length (dabco, bipy, bpe) in DMF and characterized by powder X-ray diffraction, IR spectroscopy, and TGA. The obtained compounds are isostructural with the previously reported porous zinc(II) camphorates.  相似文献   

15.
The reactions of silver nitrate with 2-sulfoisophthalic acid (H3stp) in the presence of N-donor ligands produced three coordination polymers; [Ag3(stp)(pyz)0.5]n (1), {[Ag4(dpp)4]·2(Hstp)·9H2O}n (2), and {[Ag(bpe)]2[Ag2(bpe)2]2·2(stp)·19H2O}n (3) [pyz = pyrazine, bpp = 1,2-bis(4-pyridyl)propane, bpe = 1,2-di(4-pyridyl)-ethylene]. The complexes have been characterized by single-crystal X-ray diffraction, physico-chemical, and spectroscopic methods. Single-crystal X-ray diffraction reveals that complex 1 is a 2D silver carboxylate-sulfonate layered structure, in which the 2D layers are further linked by the N-donor atoms of pyz ligands into a 3D supramolecular structure. Complex 2 is an infinite 1D chain arrangement with the [Ag2(dpp)2]2+ unit in which weak Ag···Ag or Ag···O interactions extend the chains into 2D structures. Complex 3 has a 3D supramolecular structure constructed by hydrogen bonding, π–π stacking, and Ag···O interactions to link the ligands, metal atoms, and water molecules together. The luminescence properties of the complexes were investigated.  相似文献   

16.
The reaction of 1,1,1,5,5,5-hexafluoroacetylacetone (Hhfac) with Ag2O in the presence of L=THF, toluene, and Me3SiCH=CH2 was studied to obtain [Ag(hfac)L]x complexes for use as chemical vapor deposition precursors. The structures and volatilities of these three complexes were compared to those of the previously synthesized Ag(hfac)(Me3SiC triple bond CSiMe3), 1, which was also crystallographically characterized for comparison. The reaction of Ag2O with Hhfac in THF forms the polymeric complex [Ag4(hfac)4(THF)2]infinity, 2, which has tetrametallic subunits with hfac ligands that bridge via oxygen and carbon. Both 4- and 5-coordinate silver metal centers are found in 2. Ag2O reacts with Hhfac in toluene to form a complex with a similar tetrametallic unit [Ag4(hfac)4(toluene)2]infinity, 3. In this case, the tetrametallic subunits are assembled via bridging toluene molecules, and each silver is 6-coordinate. In the presence of excess vinyltrimethylsilane (vtms), Ag2O and Hhfac form [Ag3(hfac)3(vtms)]infinity, 4, which contains trimetallic subunits assembled via oxygen atoms of bridging hfac ligands and 5- and 6-coordinate silver.  相似文献   

17.
用水热法合成得到2个配合物,{[ML2(bipy)(H2O)2]·2bipy}n(M=Cd 1,Zn 2;HL=3-羟基肉桂酸,bipy=4,4′-联吡啶),并对它们进行了红外分析、元素分析,热重分析和单晶结构分析。配合物12为异质同晶,单斜晶系,P2/c空间群。中心金属M为六配位,相邻的M通过4,4′-联吡啶桥联形成沿b轴延伸的一维链状结构,此外还存在未配位的4,4′-联吡啶作为客体分子位于链与链之间。通过对配合物12的固态荧光测试表明,它们在绿光区均显示发光效应。  相似文献   

18.
Nitrogen donor tetradentate ligands 4,4'-bipyridazine (bpdz) and pyridazino[4,5-d]pyridazine (pp) were prepared by inverse electron demand Diels-Alder cycloaddition reactions of 1,2,4,5-tetrazine. Examination of their behaviour towards silver(i) ions revealed a special potential of the ligands for the design of 3D coordination frameworks involving characteristic polynuclear and polymeric silver(i)-pyridazine motifs and multiple coordination of the ligands. Ag(4)(pp)(5)(ClO(4))(4) and Ag(4)(pp)(5)(SiF(6))(BF(4))(2).4H(2)O adopt a unique 3D trinodal 4,4,5-connected topology based upon five-fold coordination of the metal ions and tetradentate bridging function of the organic modules. Complexes Ag(3)(L)(3)(SO(3)CF(3))(3).nH(2)O and Ag(4)(L)(3)(X)(4).nH(2)O (L = bpdz, pp; X = BF(4)(-), 0.5SiF(6)(2-)) illustrate formation of highly-connected frameworks incorporating trinuclear clusters as an origin of the net connectivity. In the carboxylate complexes Ag(2)(L)(R(F)COO)(2) (R(F) = CF(3), C(2)F(5), C(3)F(7)) the pyridazine and acido ligands act as complementary linkers for generation of 3D frameworks involving helicate motifs. Fused bicyclic pyridazine pp is a unique system combining very efficient sigma(N)-donor ability and pronounced pi-acidity. The coordination frameworks commonly exhibit strong anion-pi interactions, including unprecedented examples of double anion-pi,pi binding that occur between pyridazino[4,5-d]pyridazine as a double pi,pi-receptor for geometry complementary SiF(6)(2-) anions.  相似文献   

19.
Triflate abstraction from the complex [Re(OTf)(CO)(3)(bipy)] (1) using the salt NaBAr'(4) (Ar' = 3,5-bis(trifluoromethyl)phenyl) in dichloromethane solution in the presence of L = PPh(3), NCMe, NCPh, imines, ketones, Et(2)O, THF, MeOH, and MeI affords cationic complexes [Re(L)(CO)(3)(bipy)](+) as their BAr'(4)(-) salts. The new complexes have been characterized spectroscopically and, for [Re(eta(1)-O=C(Me)R)(CO)(3)(bipy)]BAr'(4) (R = CH(3), 6a; R = Ph, 6b), and [Re(THF)(CO)(3)(bipy)]BAr'(4) (9), also by single-crystal X-ray diffraction. Compared with conventional methodologies, the route reported here allows the coordination of a broader range of weakly coordinating ligands and requires considerably milder conditions. On the other hand, the reactions of lithium acetylides with [Re(THF)(CO)(3)(bipy)]BAr'(4) (9) can be used for the high-yield syntheses of rhenium alkynyls [Re(Ctbd1;CR)(CO)(3)(bipy)] (R = Ph, 12; R = SiMe(3), 13). Complex 9 was found to catalyze the aziridination of benzylideneaniline with ethyl diazoacetate.  相似文献   

20.
We report herein the synthesis and physicochemical characterization of eight new manganese-oxalato compounds with 1,2-bis(4-pyridyl)ethylene (bpe): {(Hbpe)(2)[Mn(2)(μ-ox)(3)]·~0.8(C(2)H(5)OH)·~0.4(H(2)O)}(n) (1), {[Mn(μ-ox)(μ-bpe)]·xH(2)O}(n) (2), [Mn(2)(μ-ox)(2)(μ-bpe)(bpe)(2)](n) (3), [Mn(μ-ox)(μ-bpe)](n) (4a and 4b), and {[Mn(4)(μ-ox)(3)(μ-bpe)(4)(H(2)O)(4)]·(X)(2)·mY}(n) with X = NO(3)(-) (5a), Br(-) (5b), and ClO(4)(-) (5c) and Y = solvation molecules. The appropriate selection of the synthetic conditions allowed us to control the crystal structure and to design extended 2D and 3D frameworks. Compound 1 is obtained at acid pH values and its crystal structure consists of stacked [Mn(2)(μ-ox)(3)](2-) layers with cationic Hbpe(+) molecules intercalated among them. Compound 2 was obtained at basic pH values with a manganese/bpe ratio of 1:1, and the resulting 3D structure consists of an interpenetrating framework in which metal-oxalato chains are bridged by bpe ligands, leading to a microporous network that hosts a variable number of water molecules (between 0 and 1) depending on the synthetic conditions. Compound 3, synthesized with a manganese/bpe ratio of 1:3, shows a 2D framework in which linear metal-oxalato chains are joined by bis-monodentate 1,2-bis(4-pyridyl)ethylene ligands. The thermal treatment of compound 3 permits the release of one of the bpe molecules, giving rise to two new 2D crystalline phases of formula [Mn(μ-ox)(μ-bpe)](n) (4a and 4b) depending on the heating rate. The open structures of 5a-5c were synthesized in a medium with a high concentration of nitrate, perchlorate, or bromide salts (potassium or sodium as cations). These anions behave as templating agents directing the crystal growing toward a cationic porous network, in which the anions placed in the voids and channels of the structure present high mobility, as inferred from the ionic exchange experiments. Variable-temperature magnetic susceptibility measurements show an overall antiferromagnetic behavior for all compounds, which are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号