首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields, represented by a mesoscopic polarisation field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalised Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.  相似文献   

2.
魏文叶  申佳音  吴奕暐  杨礼想  薛迅  阮自强 《物理学报》2017,66(13):130301-130301
微波背景辐射的低l极矩的各向异性可能不能用微波背景辐射静止系boost到本动参考系来解释,我们推断boost对称性在宇宙学尺度上缺失,又由于单纯结合广义相对论和物质结构的标准模型不能解释星系以上尺度的引力现象,需要引入暗物质和暗能量.而迄今为止所有寻找暗物质粒子的实验给出的都是否定结果,暗能量的本质更是一个谜.因此,我们假设洛伦兹对称性是从星系以上尺度开始部分破缺,以非常狭义相对论对称群E(2)为例,用E(2)规范理论来构造大尺度有效引力理论,并分析了此规范理论的自洽性.从这些讨论中发现,当物质源即使为普通标量物质时,contortion也一般非零,非零contortion的存在会贡献一个等效能量动量张量的分布,它可能对暗物质效应给出至少部分的贡献.我们从对称性出发修改引力,有别于其他的修改引力理论.  相似文献   

3.
We investigate the coupling of the electromagnetic sources (charge and current densities) to the scalar and vector potentials in classical electrodynamics, using Green function techniques. As is well known, the scalar potential shows an action-at-a-distance behavior in Coulomb gauge. The conundrum generated by the instantaneous interaction has intrigued physicists for a long time. Starting from the differential equations that couple the sources to the potentials, we here show in a concise derivation, using the retarded Green function, how the instantaneous interaction cancels in the calculation of the electric field. The time derivative of a specific additional term in the vector potential, present only in Coulomb gauge, yields a supplementary contribution to the electric field which cancels the gradient of the instantaneous Coulomb gauge scalar potential, as required by gauge invariance. This completely eliminates the contribution of the instantaneous interaction from the electric field. It turns out that a careful formulation of the retarded Green function, inspired by field theory, is required in order to correctly treat boundary terms in partial integrations. Finally, compact integral representations are derived for the Liénard–Wiechert potentials (scalar and vector) in Coulomb gauge which manifestly contain two compensating action-at-a-distance terms.  相似文献   

4.
The minimal relativistic model of gravitation on the basis of the gauge-invariant theory of the linear scalar massless field is suggested. The principle of the multiplicative inclusion of gravitational interaction, the requirements being that the simplicity and invariance of the theory under the allowed (gauge) transformation of potential Ф → Ф′ = Ф + const as the basis of the approach, is used. A system of gauge-invariant gravitational field and matter equations is obtained and an energy-momentum tensor with a positively defined density of the field energy is constructed. The exact solutions to equations for the central static field and for fields of spherically symmetric and plane gravitational waves in the free space and in the material media are obtained.  相似文献   

5.
本文是文献[1]和[2]联合的后继文章,在文中我们依据电磁学和电动力学中的麦克斯韦方程组建立了有质量光子导致导体中的超导现象这一事实的规范不变描写,文献[1]的结果是目前理论选取洛伦兹规范的特殊情形.我们发现在这种规范不变的理论中存在一个零质量的标量场,它可以和规范势的纵向分量相互转化.这正是文献[2]所介绍的2013年诺贝尔物理学奖中著名的希格斯机制,即规范粒子吃掉Goldstone玻色子而产生纵向分量,因而获得质量.这个新引进的零质量标量场对应量子场论中激发Goldstone玻色子的标量场,它可以被看成是一个更一般的两分量复标量场的相角分量.而此推广的复标量场的常数模分量可以被看成是另一个动力学场——希格斯场的真空期望值.希格斯场的激发是希格斯粒子,即所谓上帝的粒子;而光子的质量则起源于希格斯场的真空期望值.  相似文献   

6.
Through an analysis of quantum field theory with “fundamental length” l[1–10], a new concept of gauge vector field is determined. The electromagnetic field is considered in detail. The new electromagnetic potential turns out to be a 5-vector associated with the De Sitter group SO(4,1). The extra fifth component, called τ-photon, similar to the scalar and longitudinal photons, does not correspond to an independent dynamical degree of freedom. Gauge-invariant equations of motion for all components of the electromagnetic 5-potential are found. Though the new gauge group remains Abelian, it is nevertheless larger than the conventional gauge group. In particular, the new gauge transformations intrinsically depend on the fundamental length l. Therefore one can consider them as a base for modification of QED at small distances (?l) in a profound way. The underlying physics becomes much richer due to the appearance of new interactions mediated by the τ-photons [14].  相似文献   

7.
We discuss gauge transformations in QED coupled to a charged spinor field, and examine whether we can gauge-transform the entire formulation of the theory from one gauge to another, so that not only the gauge and spinor fields, but also the forms of the operator-valued Hamiltonians are transformed. The discussion includes the covariant gauge, in which the gauge condition and Gauss's law are not primary constraints on operator-valued quantities; it also includes the Coulomb gauge, and the spatial axial gauge, in which the constraints are imposed on operator-valued fields by applying the Dirac-Bergmann procedure. We show how to transform the covariant, Coulomb, and spatial axial gauges to what we call “common form,” in which all particle excitation modes have identical properties. We also show that, once that common form has been reached, QED in different gauges has a common time-evolution operator that defines time-translation for states that represent systems of electrons and photons. By combining gauge transformations with changes of representation from standard to common form, the entire apparatus of a gauge theory can be transformed from one gauge to another.  相似文献   

8.
New gauges are introduced. The potentials, vector and scalar, in these gauges are obtained in closed forms by the Green's function method. These closed form solutions are explicity expressed only in terms of the charge and current densities. The physical interpretation is on how potentials propagate from the charge and current densities. The Coulomb gauge and the Lorentz gauge are special cases of a new gauge defined in this paper. It is called the complete α-Lorentz gauge. The scalar potential propagates at speed αc from the charge density for any positive α. When α is one, the usual solutions for the Lorentz gauge are recovered. When α is not one, our results show that, in order to satisfy the requirement that electromagnetic fields be gauge invariant and in order to conform to Maxwell's interpretation that electromagnetic fields propagate at speed c from the charge and current densities (we only consider the vacuum), the vector potential must contain two mathematically and physically independent gradient components. Furthermore, one such component must propagate at speed αc while the other must at speed c from charge and current densities. Our discussions on the Coulomb gauge are based on the results obtained by letting α go to (positive) infinity. Guided by Maxwell's interpretation, we introduce a new decomposition of the vector potential in the Lorentz gauge into a longitudinal and a transverse component. For an arbitrary charge and current distribution, it is shown that the transverse component will generate all the fields only in the radiation zone. However, for a point charged particle, the transverse component only generates the “free fields”everywhere in the instantaneous rest frame of the charged particle.  相似文献   

9.
The paper is devoted to a geometrical interpretation of gauge invariance in terms of the formalism of field theory in compact space–time dimensions (Dolce, 2011) [8]. In this formalism, the kinematic information of an interacting elementary particle is encoded on the relativistic geometrodynamics of the boundary of the theory through local transformations of the underlying space–time coordinates. Therefore gauge interactions are described as invariance of the theory under local deformations of the boundary. The resulting local variations of the field solution are interpreted as internal transformations. The internal symmetries of the gauge theory turn out to be related to corresponding space–time local symmetries. In the approximation of local infinitesimal isometric transformations, Maxwell’s kinematics and gauge invariance are inferred directly from the variational principle. Furthermore we explicitly impose periodic conditions at the boundary of the theory as semi-classical quantization condition in order to investigate the quantum behavior of gauge interaction. In the abelian case the result is a remarkable formal correspondence with scalar QED.  相似文献   

10.
The effective Coulomb interaction between sources with SU(2) color charge is reinvestigated at the one-loop order of perturbation theory. This quantity is shown to be formally identical with the effective Coulomb interaction between electric charges in the QED of massless, charged, vector fields with anomalous magnetic moments. This correspondence allows the one-loop Yang-Mills charge renormalization factor to be deduced from a knowledge of the size and origins of this quantity in massless scalar and spinor QED. Careful consideration of the analogy with QED suggests a mechanism for asymptotic freedom in the Feynman gauge.  相似文献   

11.
Characteristics of nonlinear gauge-invariant singularity-free field theories of elementary particles are discussed. It is shown that the electromagnetic field, in conjunction with a scalar field which is required for gauge invariance, provides a potential mechanism for the creation of the spin and magnetic moment of the particle, in addition to its mass and charge.  相似文献   

12.
13.
We analyze the recently proposed definition of the off-shell, gauge-invariant, gauge-independent, effective action Γ, utilizing an invariant metric on the field space. It is shown how to establish correspondence between Γ and the standard effective action, calculated in some particular (Landau-type) gauge. Several examples are explicitly discussed, including Yang-Mills theory, the effective potential in scalar QED, and one-loop quantum gravity. Generalization to the case of super-invariant theories (e.g. super-Yang-Mills and supergravity) is also presented.  相似文献   

14.
We perform a general analysis of the dynamic structure of two classes of relativistic lagrangian field theories exhibiting static spherically symmetric non-topological soliton solutions. The analysis is concerned with (multi-) scalar fields and generalized gauge fields of compact semi-simple Lie groups. The lagrangian densities governing the dynamics of the (multi-) scalar fields are assumed to be general functions of the kinetic terms, whereas the gauge-invariant lagrangians are general functions of the field invariants. These functions are constrained by requirements of regularity, positivity of the energy and vanishing of the vacuum energy, defining what we call “admissible” models. In the scalar case we establish the general conditions which determine exhaustively the families of admissible lagrangian models supporting this kind of finite-energy solutions. We analyze some explicit examples of these different families, which are defined by the asymptotic and central behaviour of the fields of the corresponding particle-like solutions. From the variational analysis of the energy functional, we show that the admissibility constraints and the finiteness of the energy of the scalar solitons are necessary and sufficient conditions for their linear static stability against small charge-preserving perturbations. Furthermore, we perform a general spectral analysis of the dynamic evolution of the small perturbations around the statically stable solitons, establishing their dynamic stability. Next, we consider the case of many-components scalar fields, showing that the resolution of the particle-like field problem in this case reduces to that of the one-component case. The study of these scalar models is a necessary step in the analysis of the gauge fields. In this latter case, we add the requirement of parity invariance to the admissibility constraints. We determine the general conditions defining the families of admissible gauge-invariant models exhibiting finite-energy electrostatic spherically symmetric solutions which, unlike the (multi-) scalar case, are not always stable. The variational analysis of the energy functional leads now to supplementary restrictions to be imposed on the lagrangian densities in order to ensure the linear stability of the solitons. We establish a correspondence between any admissible soliton-supporting (multi-) scalar model and a family of admissible generalized gauge models supporting finite-energy electrostatic point-like solutions. Conversely, for each admissible soliton-supporting gauge-invariant model there is an associated unique admissible (multi-) scalar model with soliton solutions. This shows the exhaustive character of the admissibility and stability conditions in determining the class of soliton-supporting generalized gauge models. The usual Born-Infeld electrodynamic theory and its non-abelian extensions are shown to be (very particular) examples of one of these families.  相似文献   

15.
In this work, we focus on the theory of gravito-electromagnetism (GEM)—the theory that describes the dynamics of the gravitational field in terms of quantities met in electromagnetism—and we propose two novel forms of metric perturbations. The first one is a generalisation of the traditional GEM ansatz, and succeeds in reproducing the whole set of Maxwell’s equations even for a dynamical vector potential \(\mathbf {A}\). The second form, the so-called alternative ansatz, goes beyond that leading to an expression for the Lorentz force that matches the one of electromagnetism and is free of additional terms even for a dynamical scalar potential \(\varPhi \). In the context of the linearised theory, we then search for scalar invariant quantities in analogy to electromagnetism. We define three novel, 3rd-rank gravitational tensors, and demonstrate that the last two can be employed to construct scalar quantities that succeed in giving results very similar to those found in electromagnetism. Finally, the gauge invariance of the linearised gravitational theory is studied, and shown to lead to the gauge invariance of the GEM fields \(\mathbf {E}\) and \(\mathbf {B}\) for a general configuration of the arbitrary vector involved in the coordinate transformations.  相似文献   

16.
17.
A general method is proposed for the construction of a gauge-invariant canonical quantum formulation for the gauge-invariant classical theory that depends on the set of parameters. The conditions for closure of the algebra of operators, which generate quantum gauge transformations, entails constraints on the parameters of the theory. The approach described is demonstrated by the example of a closed bosonic string, interacting with a background tachyonic field. The condition of a mass shell for the tachyon is reproduced within the framework of the proposed canonical formulation. Tomsk State Pedagogical Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 18–24, June, 1997.  相似文献   

18.
It is an endeavour to make field theoretic approach available to the domain of electronic and atomic collision physics. The capacity of QED is demonstrated in explaining atomic collision phenomena in Coulomb gauge and depending on energy, in relativistic Lorentz gauge. Feynman diagrams are used to calculate bound state collision problems in atomic physics.  相似文献   

19.

We have considered the generalized version of chiral schwinger model with the Lorentz covariant masslike term for gauge field with the choice a ? r2 =?0. We carry out the quantization by the canonical Dirac method of both the gauge-invariant and non-invariant version of this model to determine the phase space structure. Therefore we have shown that the gauge invariant theory has the same physical spectrum as that of the original gauge noninvariant formulation.

  相似文献   

20.
Relativistic quantum mechanics leads to the specification of initial and final conditions for the wave amplitudes and electromagnetic potentials. The interaction between one scalar charged particle and the electromagnetic field has previously been solved by perturbation expansions in the Coulomb gauge. Here the theory is extended to the Lorentz gauge, which requires a different set of initial or final conditions on the potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号