首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We demonstrate the emergence of non-Abelian fusion rules for excitations of a two dimensional lattice model built out of Abelian degrees of freedom. It can be considered as an extension of the usual toric code model on a two dimensional lattice augmented with matter fields. It consists of the usual C(Zp)C(Zp) gauge degrees of freedom living on the links together with matter degrees of freedom living on the vertices. The matter part is described by a nn dimensional vector space which we call HnHn. The ZpZp gauge particles act on the vertex particles and thus HnHn can be thought of as a C(Zp)C(Zp) module. An exactly solvable model is built with operators acting in this Hilbert space. The vertex excitations for this model are studied and shown to obey non-Abelian fusion rules. We will show this for specific values of nn and pp, though we believe this feature holds for all n>pn>p. We will see that non-Abelian anyons of the quantum double of C(S3)C(S3) are obtained as part of the vertex excitations of the model with n=6n=6 and p=3p=3. Ising anyons are obtained in the model with n=4n=4 and p=2p=2. The n=3n=3 and p=2p=2 case is also worked out as this is the simplest model exhibiting non-Abelian fusion rules. Another common feature shared by these models is that the ground states have a higher symmetry than ZpZp. This makes them possible candidates for realizing quantum computation.  相似文献   

3.
A complex symplectic structure on a Lie algebra hh is an integrable complex structure JJ with a closed non-degenerate (2,0)(2,0)-form. It is determined by JJ and the real part ΩΩ of the (2,0)(2,0)-form. Suppose that hh is a semi-direct product g?Vg?V, and both gg and VV are Lagrangian with respect to ΩΩ and totally real with respect to JJ. This note shows that g?Vg?V is its own weak mirror image in the sense that the associated differential Gerstenhaber algebras controlling the extended deformations of ΩΩ and JJ are isomorphic.  相似文献   

4.
We discuss space-time symmetric Hamiltonian operators of the form H=H0+igHH=H0+igH, where H0H0 is Hermitian and gg real. H0H0 is invariant under the unitary operations of a point group GG while HH is invariant under transformation by elements of a subgroup GG of GG. If GG exhibits irreducible representations of dimension greater than unity, then it is possible that HH has complex eigenvalues for sufficiently small nonzero values of gg. In the particular case that HH is parity-time symmetric then it appears to exhibit real eigenvalues for all 0<g<gc0<g<gc, where gcgc is the exceptional point closest to the origin. Point-group symmetry and perturbation theory enable one to predict whether HH may exhibit real or complex eigenvalues for g>0g>0. We illustrate the main theoretical results and conclusions of this paper by means of two- and three-dimensional Hamiltonians exhibiting a variety of different point-group symmetries.  相似文献   

5.
6.
A curve αα immersed in the three-dimensional sphere S3S3 is said to be a Bertrand curve if there exists another curve ββ and a one-to-one correspondence between αα and ββ such that both curves have common principal normal geodesics at corresponding points. The curves αα and ββ are said to be a pair of Bertrand curves in S3S3. One of our main results is a sort of theorem for Bertrand curves in S3S3 which formally agrees with the classical one: “Bertrand curves in S3S3 correspond to curves for which there exist two constants λ≠0λ0 and μμ such that λκ+μτ=1λκ+μτ=1”, where κκ and ττ stand for the curvature and torsion of the curve; in particular, general helices in the 3-sphere introduced by M. Barros are Bertrand curves. As an easy application of the main theorem, we characterize helices in S3S3 as the only twisted curves in S3S3 having infinite Bertrand conjugate curves. We also find several relationships between Bertrand curves in S3S3 and (1,3)-Bertrand curves in R4R4.  相似文献   

7.
When locally engineering F-theory models some D7D7-branes for the gauge group factors are specified and matter is localized on the intersection curves of the compact parts of the world-volumes. In this note, we discuss to what extent one can draw conclusions about F-theory models by just restricting the attention locally to a particular seven-brane. Globally, the possible D7D7-branes are not independent from each other and the (compact part of the) D7D7-brane can have unavoidable intrinsic singularities. Many special intersecting loci which were not chosen by hand occur inevitably, notably codimension-three loci which are not   intersections of matter curves. We describe these complications specifically in a global SU(5)SU(5) model and also their impact on the tadpole cancellation condition.  相似文献   

8.
In [L. Lebtahi, Lie algebra on the transverse bundle of a decreasing family of foliations, J. Geom. Phys. 60 (2010), 122–133], we defined the transverse bundle VkVk to a decreasing family of kk foliations FiFi on a manifold MM. We have shown that there exists a (1,1)(1,1) tensor JJ of VkVk such that Jk≠0Jk0, Jk+1=0Jk+1=0 and we defined by LJ(Vk)LJ(Vk) the Lie Algebra of vector fields XX on VkVk such that, for each vector field YY on VkVk, [X,JY]=J[X,Y][X,JY]=J[X,Y].  相似文献   

9.
Even though the one-dimensional (1D) Hubbard model is solvable by the Bethe ansatz, at half-filling its finite-temperature T>0T>0 transport properties remain poorly understood. In this paper we combine that solution with symmetry to show that within that prominent T=0T=0 1D insulator the charge stiffness D(T)D(T) vanishes for T>0T>0 and finite values of the on-site repulsion UU in the thermodynamic limit. This result is exact and clarifies a long-standing open problem. It rules out that at half-filling the model is an ideal conductor in the thermodynamic limit. Whether at finite TT and U>0U>0 it is an ideal insulator or a normal resistor remains an open question. That at half-filling the charge stiffness is finite at U=0U=0 and vanishes for U>0U>0 is found to result from a general transition from a conductor to an insulator or resistor occurring at U=Uc=0U=Uc=0 for all finite temperatures T>0T>0. (At T=0T=0 such a transition is the quantum metal to Mott-Hubbard-insulator transition.) The interplay of the ηη-spin SU(2)SU(2) symmetry with the hidden U(1)U(1) symmetry beyond SO(4)SO(4) is found to play a central role in the unusual finite-temperature charge transport properties of the 1D half-filled Hubbard model.  相似文献   

10.
In this paper we show that for a compact minimal hypersurface MM of constant scalar curvature in the unit sphere S6S6 with the shape operator AA satisfying ‖A‖2>5A2>5, there exists an eigenvalue λ>10λ>10 of the Laplace operator of the hypersurface MM such that ‖A‖2=λ−5A2=λ5. This gives the next discrete value of ‖A‖2A2 greater than 0 and 5.  相似文献   

11.
We analyse the phase diagram of a quantum mean spherical model in terms of the temperature TT, a quantum parameter gg, and the ratio p=−J2/J1p=J2/J1, where J1>0J1>0 refers to ferromagnetic interactions between first-neighbour sites along the dd directions of a hypercubic lattice, and J2<0J2<0 is associated with competing antiferromagnetic interactions between second neighbours along m≤dmd directions. We regain a number of known results for the classical version of this model, including the topology of the critical line in the g=0g=0 space, with a Lifshitz point at p=1/4p=1/4, for d>2d>2, and closed-form expressions for the decay of the pair correlations in one dimension. In the T=0T=0 phase diagram, there is a critical border, gc=gc(p)gc=gc(p) for d≥2d2, with a singularity at the Lifshitz point if d<(m+4)/2d<(m+4)/2. We also establish upper and lower critical dimensions, and analyse the quantum critical behavior in the neighborhood of p=1/4p=1/4.  相似文献   

12.
We consider a Schrödinger differential expression L=ΔA+qL=ΔA+q on a complete Riemannian manifold (M,g)(M,g) with metric gg, where ΔAΔA is the magnetic Laplacian on MM and q≥0q0 is a locally square integrable function on MM. In the terminology of W.N. Everitt and M. Giertz, the differential expression LL is said to be separated in L2(M)L2(M) if for all u∈L2(M)uL2(M) such that Lu∈L2(M)LuL2(M), we have qu∈L2(M)quL2(M). We give sufficient conditions for LL to be separated in L2(M)L2(M).  相似文献   

13.
The sound attenuation phenomena is investigated for a spin- 3/2 Ising model on the Bethe lattice in terms of the recursion relations by using the Onsager theory of irreversible thermodynamics. The dependencies of sound attenuation on the temperature (TT), frequency (ww), Onsager coefficient (γγ) and external magnetic field (HH) near the second-order (Tc)(Tc) and first-order (Tt)(Tt) phase transition temperatures are examined for given coordination numbers qq on the Bethe lattice. It is assumed that the sound wave couples to the order-parameter fluctuations which decay mainly via the order-parameter relaxation process, thus two relaxation times are obtained and which are used to obtain an expression for the sound attenuation coefficient (α)(α). Our investigations revealed that only one peak is obtained near TtTt and three peaks are found near TcTc when the Onsager coefficient is varied at a given constant frequency for q=3q=3. Fixing the Onsager coefficient and varying the frequency always leads to two peaks for q=3,4q=3,4 and 6 near TcTc. The sound attenuation peaks are observed near TtTt at lower values of external magnetic field, but as it increases the sound attenuation peaks decrease and eventually disappear.  相似文献   

14.
15.
We discuss three Hamiltonians, each with a central-field part H0H0 and a PT-symmetric perturbation igzigz. When H0H0 is the isotropic Harmonic oscillator the spectrum is real for all gg because HH is isospectral to H0+g2/2H0+g2/2. When H0H0 is the Hydrogen atom then infinitely many eigenvalues are complex for all gg. If the potential in H0H0 is linear in the radial variable rr then the spectrum of HH exhibits real eigenvalues for 0<g<gc0<g<gc and a PT phase transition at gcgc.  相似文献   

16.
In this article we study in detail the supersymmetric structures that underlie the system of fermionic zero modes around a superconducting cosmic string. Particularly, we extend the analysis existing in the literature on the one dimensional N=2N=2 supersymmetry and we find multiple N=2N=2, d=1d=1 supersymmetries. In addition, compact perturbations of the Witten index of the system are performed and we find to which physical situations these perturbations correspond. More importantly, we demonstrate that there exists a much more rich supersymmetric structure underlying the system of fermions with NfNf flavors and these are NN-extended supersymmetric structures with non-trivial topological charges, with “NN” depending on the fermion flavors.  相似文献   

17.
18.
We consider a Schrödinger-type differential expression HV=∇∇+VHV=+V, where ∇ is a Hermitian connection on a Hermitian vector bundle EE over a complete Riemannian manifold (M,g)(M,g) with metric gg and positive smooth measure dμdμ, and VV is a locally integrable section of the bundle of endomorphisms of EE. We give a sufficient condition for mm-accretivity of a realization of HVHV in L2(E)L2(E).  相似文献   

19.
We present new axially symmetric half-monopole configuration of the SU(2)×U(1) Weinberg–Salam model of electromagnetic and weak interactions. The half-monopole configuration possesses net magnetic charge 2π/e2π/e which is half the magnetic charge of a Cho–Maison monopole. The electromagnetic gauge potential is singular along the negative zz-axis. However the total energy is finite and increases only logarithmically with increasing Higgs field self-coupling constant λ1/2λ1/2 at sin2θW=0.2312sin2θW=0.2312. In the U(1) magnetic field, the half-monopole is just a one dimensional finite length line magnetic charge extending from the origin r=0r=0 and lying along the negative zz-axis. In the SU(2) ’t Hooft magnetic field, it is a point magnetic charge located at r=0r=0. The half-monopole possesses magnetic dipole moment that decreases exponentially fast with increasing Higgs field self-coupling constant λ1/2λ1/2 at sin2θW=0.2312sin2θW=0.2312.  相似文献   

20.
For a simply connected, compact, simple Lie group GG, the moduli space of flat GG-bundles over a closed surface ΣΣ is known to be pre-quantizable at integer levels. For non-simply connected GG, however, integrality of the level is not sufficient for pre-quantization, and this paper determines the obstruction–namely a certain cohomology class in H3(G2;Z)H3(G2;Z)–that places further restrictions on the underlying level. The levels that admit a pre-quantization of the moduli space are determined explicitly for all non-simply connected, compact, simple Lie groups GG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号