首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wang Li  M. P. Tosi 《Il Nuovo Cimento D》1989,11(10):1509-1514
Summary It is shown that long-wavelength concentration fluctuations in a binary liquid metal alloy are determined by a pair interchange free energyw, which is exactly given by the sum of an elastic strain term and of the concentration-concentration direct correlation function. The latter is evaluated in an alloy of homovalent components by electron screening theory in the pseudopotential approach of Shaw and Harrison and shown to be entirely determined by nonlocal terms reflecting charge transfer to the more electronegative alloy component. Numerical calculations for the liquid Na−K alloy show strong cancellation between the two contributions tow at all concentrations, in qualitative agreement with experiment.  相似文献   

3.
4.
5.
We extend the Einstein-aether theory to include the Maxwell field in a nontrivial manner by taking into account its interaction with the time-like unit vector field characterizing the aether. We also include a generic matter term. We present a model with a Lagrangian that includes cross-terms linear and quadratic in the Maxwell tensor, linear and quadratic in the covariant derivative of the aether velocity four-vector, linear in its second covariant derivative and in the Riemann tensor. We decompose these terms with respect to the irreducible parts of the covariant derivative of the aether velocity, namely, the acceleration four-vector, the shear and vorticity tensors, and the expansion scalar. Furthermore, we discuss the influence of an aether non-uniform motion on the polarization and magnetization of the matter in such an aether environment, as well as on its dielectric and magnetic properties. The total self-consistent system of equations for the electromagnetic and the gravitational fields, and the dynamic equations for the unit vector aether field are obtained. Possible applications of this system are discussed. Based on the principles of effective field theories, we display in an appendix all the terms up to fourth order in derivative operators that can be considered in a Lagrangian that includes the metric, the electromagnetic and the aether fields.  相似文献   

6.
The simultaneous interaction of three fundamental fields is illustrated in Einstein Cartan Evans (ECE) theory with reference to the effect of gravitation on the inverse Faraday effect. The three-field interaction in this case is that of the fermionic, electromagnetic and gravitational fields. The interaction of the first two is developed in a well-defined semi-classical approximation of the ECE wave equation and the effect of gravitation incorporated through the index reduced canonical energy momentum density T. The exercise is repeated using the ECE wave equations and a general rule developed for the effect of gravitation on the fermionic, electromagnetic weak and strong fields.  相似文献   

7.
以6-311++G(d,p)为基组,采用密度泛函的B3LYP方法优化得到不同外电场(-0·03—0·045a.u.)下CaS分子的基态结构参数、电偶极矩μ、电荷分布、HOMO能级、LUMO能级、能隙、红外光谱和谐振频率等.结果表明,随着正向电场的增加,分子结构与外电场有着强烈的依赖关系,且对电场方向的依赖呈现出不对称性,基态键长和分子偶极矩μ先减小后增大,在F=0·02a.u.时,键长Re取最小值0·2289nm,电偶极矩取最小值1·5969D,HOMO能级和LUMO能级处于先增大后减小,能隙始终是减小的,占据轨道的电子容易激发到空轨道.外电场对CaS分子的激发能和振子强度有较大的影响,这为进一步研究它的电致发光机理提供了一定的理论基础.  相似文献   

8.
We show that the quantum properties of some Josephson SQUID devices are described by a boundary sine-Gordon model. Our approach naturally describes multi-junction SQUID devices and, when applied to a single junction SQUID (the rf-SQUID), it reproduces the known results of Glazman and Hekking. We provide a detailed analysis of the regimes accessible to an rf-SQUID and to a two-Josephson junction SQUID device (the dc-SQUID). We then compute the normal component of the current-response of a SQUID device to an externally applied voltage and show that the equation describing the current-voltage characteristic function reduces to well-known results when the infrared cutoff is suitably chosen. Our approach helps in establishing new and interesting connections between superconducting devices, quantum Brownian motion, fermionic quantum wires and, more generally, quantum impurity problems.  相似文献   

9.
运用DFT-B3LYP/6-311G(d,p)方法,计算了所设计的三种双环HMX(2,4,6,8-四硝基-2,4,6,8-四氮杂双环[3.3.0]辛烷)衍生物分子。基于理论晶体密度和固态生成热计算衍生物分子的爆轰性能;通过前线轨道能与特征高度(h50)评价衍生物分子的感度。结果表明,理论晶体密度均高于1.90 g.cm-3,爆速高于9.0 km.s-1,爆压约为40 GPa。三种双环HMX衍生物分子是潜在的高能量密度材料。  相似文献   

10.
The study of quantum degenerate gases has received much interest in these last years essentially thanks to the extremely important experimental results of the achievement of Bose-Einstein condensation of atoms and, very recently, of almost complete degeneracy of atomic fermion gases. Here we want to present the results of a semi-analytical method for the study of an interacting degenerate fermion gas based on semiclassical kinetic theory; special care has been devoted to the study of a rotating electron gas, in a cylindrically symmetrical configuration, radially confined by a uniform magnetic field. The model will lead to a particular Thomas-Fermi equation which is generalized to take into account finite temperature and average velocity of the gas, and which is further developed to consider the effects of external fields. Received 10 March 2000  相似文献   

11.
张志东  李静  魏怀鹏 《中国物理》2005,14(2):393-397
The nematic liquid crystal film composed of n molecular layers is studied based upon a spatially anisotropic pair potential, which reproduces approximately the elastic free energy density. On condition that the system has perfect nematic order, as in the Lebwohl—Lasher model, the director in the film is isotropic. The effect of the temperature is investigated by means of molecular field theory. Some new results are obtained. Firstly, symmetry breaking takes place when taking account of the temperature, and the state with the director along the normal of the film has the lowest free energy. Secondly, the N—I phase transition temperature increases as an effect of finite sizes instead of decreasing as in the Lebwohl—Lasher model. Thirdly, the nematic order is induced in the layers near the surface in the isotropic phase.  相似文献   

12.
13.
Topological singularity in a continuum theory of defects and a quantum field theory is studied from a viewpoint of differential geometry. The integrability conditions of singularity (Clairaut‐Schwarz‐Young theorem) are expressed by a torsion tensor and a curvature tensor when a Finslerian intrinsic parallelism holds for the multi‐valued function. In the context of the quantum field theory, the singularity called an extended object is expressed by the torsion when the intrinsic parallelism is related to the spontaneous breakdown of symmetry. In the continuum theory of defects, the path‐dependency of point and line defects within a crystal is interpreted by the non‐vanishing condition of torsion tensor in a non‐Riemannian space osculated from the Finsler space, and the domain is not simply connected. On the other hand, for the rotational singularity, an energy integral (J‐integral) around a disclination field is path‐independent when a nonlinear connection is single‐valued. This means that the topological expression for the sole defect (Gauss‐Bonnet theorem with genus ) is understood by the integrability of nonlinear connection.

  相似文献   


14.
Organic compounds exhibiting the smectic C phase are made of rod-like molecules that have dipolar groups with lateral components. We argue that the off-axis character of the lateral dipolar groups can account for tilt in layered smectics (SmC, SmC*, SmI etc.). We develop a mean-field theory of the smectic C phase based on a single-particle potential of the form U C ∝ sin(2θ)cosφ, consistent with the biaxial nature of the phase, where θ and φ are the polar and azimuthal angles, respectively. The hard-rod interactions that favour the smectic A phase with zero tilt angle are also included. The theoretical phase diagrams compare favourably with experimental trends. Our theory also leads to the following results: i) a first-order smectic C to smectic A transition above some value of the McMillan parameter α, leading to a tricritical point on the smectic C to smectic A transition line and ii) a first-order smectic C to smectic C transition over a very small range of values of the model parameters. We have also extended the theory to include the next higher-order term in the tilting potential and to include the effect of different tilt angles for the molecular core and the chain in the SmC phase. Received 3 August 2002 RID="a" ID="a"Present address: Department of Physics, Vijaya College, R. V. Road, Bangalore - 560 004, India. RID="b" ID="b"e-mail: nvmadhu@rri.res.in  相似文献   

15.
Making use of the fibre bundle theory to describe metric–affine gauge theories of gravity we are able to show that metric–affine gauge theory can be reduced to the Riemann–Cartan one. The price we pay for simplifying the geometry is the presence of matter fields associated with the nonmetric degrees of freedom of the original setup. Also, a possible framework for the construction of a quantum gravity theory is developed in the text.  相似文献   

16.
Five dimensional classical unified field theories as well as Yang-Mills theory with gauge group U(1), are described in terms of a Lorentzian five dimensional space V5 with metric tensor γβ which admits a space-like Killing vector ζ. It is assumed that: (1) V5 has the topology of V4 x S1, S1 is a circle and V4 is a four dimensional Lorentzian space that is asymptotically flat and (2) the Einstein tensor Γβ of V5 satisfies Γβ Uυβ 0 where U and υ are future oriented time-like vectors with γβυζβ = 0. The spinor approach of Witten [4], Nester [3] and Moreschi and Sparling [5] is used to show that the conserved five dimensional energymomentum vector P = ifΓβ = 0 then V5 must admit a time-like Killing vector. Lichnerowicz's results [1] then imply that V5 must be flat. A lower bound for P4 (the mass) similar to that found by Gibbons and Hull [6] is obtained.  相似文献   

17.
A non-partial-wave Coulomb-Born theory is recently formulated to treat the excitation of many-electron atomic ions for impact by an arbitrary charged particle [Y.B. Duan et al., Phys. Rev. A 56, 2431 (1997)]. The multiple expansion of the transition matrix element is decomposed into the target form factor and the projectile form factor. These are the matrix elements of the tensor operators between quantum states so that any complicated wave function for the target ion can be employed. In this formal theory, an infinitesimally small positive quantity is introduced artificially to guarantee the convergence of integrals. As a supplementary part of the theory, we discuss how to choose the value of . It is found that the should be taken as functions of the momentum transfer and multipolarity . Illustrations are carried out by calculating the cross-sections for some typical transitions n a l a -n b l b of hydrogen-like ions for impact by electron, positron, and proton, respectively. The resulting cross-sections are in good agreement with ones produced by using a method available for ion targets with Slater-type orbitals [N.C. Deb, N.C. Sil, Phys. Rev. A 28, 2806 (1993)]. Comparisons demonstrate that the Coulomb-Born theory with non-partial wave analysis provides a powerful method to treat the excitation of many-electron atomic ions impact by an arbitrary charged particle. Received 6 April 1999  相似文献   

18.
This review covers structural, electronic, and hydrogen storage properties of carbon-based materials with doped metals under electric fields with different orientations and intensities, which are determined by density functional theory (DFT) simulations. The special application case is considered in investigating variations of electronic structures, binding, and hydrogen storage properties. External fields that are often met in practical applications lead to changes of the above properties.  相似文献   

19.
Pierre-Henri Chavanis 《Physica A》2008,387(7):1504-1528
We develop the kinetic theory of Hamiltonian systems with weak long-range interactions. Starting from the Klimontovich equation and using a quasilinear theory, we obtain a general kinetic equation that can be applied to spatially inhomogeneous systems and that takes into account memory effects. This equation is valid at order 1/N in a proper thermodynamic limit and it coincides with the kinetic equation obtained from the BBGKY hierarchy. For N→+, it reduces to the Vlasov equation governing collisionless systems. We describe the process of phase mixing and violent relaxation leading to the formation of a quasistationary state (QSS) on the coarse-grained scale. We interpret the physical nature of the QSS in relation to Lynden-Bell’s statistical theory and discuss the problem of incomplete relaxation. In the second part of the paper, we consider the relaxation of a test particle in a thermal bath. We derive a Fokker-Planck equation by directly calculating the diffusion tensor and the friction force from the Klimontovich equation. We give general expressions of these quantities that are valid for possibly spatially inhomogeneous systems with long correlation time. We show that the diffusion and friction terms have a very similar structure given by a sort of generalized Kubo formula. We also obtain non-Markovian kinetic equations that can be relevant when the auto-correlation function of the force decreases slowly with time. An interesting factor in our approach is the development of a formalism that remains in physical space (instead of Fourier space) and that can deal with spatially inhomogeneous systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号