首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In this paper we revisit the Bialynicki-Birula and Mycielski uncertainty principle and its cases of equality. This Shannon entropic version of the well-known Heisenberg uncertainty principle can be used when dealing with variables that admit no variance. In this paper, we extend this uncertainty principle to Rényi entropies. We recall that in both Shannon and Rényi cases, and for a given dimension nn, the only case of equality occurs for Gaussian random vectors. We show that as nn grows, however, the bound is also asymptotically attained in the cases of nn-dimensional Student-tt and Student-rr distributions. A complete analytical study is performed in a special case of a Student-tt distribution. We also show numerically that this effect exists for the particular case of a nn-dimensional Cauchy variable, whatever the Rényi entropy considered, extending the results of Abe and illustrating the analytical asymptotic study of the Student-tt case. In the Student-rr case, we show numerically that the same behavior occurs for uniformly distributed vectors. These particular cases and other ones investigated in this paper are interesting since they show that this asymptotic behavior cannot be considered as a “Gaussianization” of the vector when the dimension increases.  相似文献   

5.
This paper proposes a new node centrality measurement in a weighted network, the communication centrality, which is inspired by Hirsch’s hh-index. We investigated the properties of the communication centrality, and proved that the distribution of the communication centrality has the power-law upper tail in weighted scale-free networks. Relevant measures for node and network are discussed as extensions. A case study of a scientific collaboration network indicates that the communication centrality is different from other common centrality measures and other hh-type indexes. Communication centrality displays moderate correlation with other indexes, and contains a well-balanced mix of other centrality measures and cannot be replaced by any of them.  相似文献   

6.
An overview of wavefunction-based correlation methods generalised for the application to solids is presented. Those methods based on a preceding Hartree–Fock treatment explicitly calculate the many-body wavefunction in contrast to the density-functional theory which relies on the ground-state density of the system. This review focus on the so-called method of increments where the correlation energy of the solid is expanded in terms of localised orbitals or of a group of localised orbitals. The method of increments is applied to a great variety of materials, from covalent semiconductors to ionic insulators, from large band-gap materials like diamond to the half-metal αα-tin, from large molecules like fullerenes over polymers, graphite to three-dimensional solids. Rare-gas crystals where the binding is van der Waals like are treated as well as solid mercury, where the metallic binding is entirely due to correlation. Strongly correlated systems are examined and the correlation driven metal–insulator transition is described at an ab initio level.  相似文献   

7.
Magnetostriction of amorphous Fe79Mo8Cu1B12, (Fe12Co1)79Mo8Cu1B12 and (Fe9Co1)79Mo8Cu1B12 prepared by planar flow casting was measured using a direct method. The results indicate that magnetostriction in parallel (λ)(λ) and perpendicular (λ)(λ) directions of applied magnetic field is linearly dependent on magnetic field. In order to determine the influences of chemical composition and the conditions of sample preparation the magnetostriction of pure BCC-Fe, Cu and Mo were also measured. Samples containing Co with Curie temperatures slightly above room temperatures were shown to exhibit a hybrid magnetostriction behaviour with both ferromagnetic and paramagnetic features.  相似文献   

8.
We investigate index theory in the context of Dirac operators coupled to superconnections. In particular, we prove a local index theorem for such operators, and for families of such operators. We investigate ηη-invariants and prove an APS theorem, and construct a geometric determinant line bundle for families of such operators, computing its curvature and holonomy in terms of familiar index theoretic quantities.  相似文献   

9.
The XXX Gaudin model with generic integrable open boundaries specified by the most general non-diagonal reflecting matrices is studied. Besides the inhomogeneous parameters, the associated Gaudin operators have six free parameters which break the U(1)U(1)-symmetry. With the help of the off-diagonal Bethe ansatz, we successfully obtained the eigenvalues of these Gaudin operators and the corresponding Bethe ansatz equations.  相似文献   

10.
11.
This paper models the cc-axis thermal conductivity of thin graphite layers taking into account phonon confinement. A Debye model is used to calculate graphite cc-axis thermal conductivity, which is found to be 4 orders of magnitude smaller than in the graphite basal plane. This reduced thermal conductivity is promising for devices with improved thermoelectric figure of merit, ZTZT, and thermal conduction along graphite cc-axis. Results of graphite thermal conductivity in the basal plane are also presented and discussed. These calculations have been done for ideal graphite structures that are a few monolayers thick, free of defects, and free of boundary scattering processes. To achieve the low calculated values of thermal conductivity, it will be necessary to fabricate high-quality graphite structures; this will pose significant fabrication challenges.  相似文献   

12.
Cosmologists today are confronted with the perplexing reality that the universe is currently accelerating in its expansion. Nevertheless, the nature of the fuel that drives today's cosmic acceleration is an open and tantalizing mystery. There exists the intriguing possibility that the acceleration is not the manifestation of yet another mysterious ingredient in the cosmic gas tank (dark energy), but rather our first real lack of understanding of gravity itself, and even possibly a signal that there might exist dimensions beyond that which we can currently observe. The braneworld model of Dvali, Gabadadze and Porrati (DGP) is a theory where gravity is altered at immense distances by the excruciatingly slow leakage of gravity off our three-dimensional Universe and, as a modified-gravity theory, has pioneered this line of investigation. I review the underlying structure of DGP gravity and those phenomenological developments relevant to cosmologists interested in a pedagogical treatment of this intriguing model.  相似文献   

13.
Co/(Gd–Co) multilayers have been prepared by rf-sputtering and investigated by means of Transverse Magnetooptic Kerr Effect (TMOKE), SQUID and VSM magnetometry. The composition of amorphous Gd0.36Co0.64Gd0.36Co0.64 layers was chosen so that their saturation magnetization was dominated by Gd moments in all the temperature range. Co and Gd–Co layers formed a macroscopic ferrimagnetically coupled system displaying a compensation temperature. Complete magnetic moment compensation was found at such point. An inversion of TMOKE hysteresis loops and a divergent behaviour of coercivity were also observed. By changing the layers thickness it has been possible to control the magnetic characteristics of the Co/(Gd–Co) structures, in particular the compensation takes place at different temperatures.  相似文献   

14.
The tendency of the entropy to a maximum as an isolated system is relaxed to the equilibrium (the second law of thermodynamics) has been known since the mid-19th century. However, independent theoretical and applied studies, which suggested the maximization of the entropy production during nonequilibrium processes (the so-called maximum entropy production principle, MEPP), appeared in the 20th century. Publications on this topic were fragmented and different research teams, which were concerned with this principle, were unaware of studies performed by other scientists. As a result, the recognition and the use of MEPP by a wider circle of researchers were considerably delayed. The objectives of the present review consist in summation and analysis of studies dealing with MEPP. The first part of the review is concerned with the thermodynamic and statistical basis of the principle (including the relationship of MEPP with the second law of thermodynamics and Prigogine's principle). Various existing applications of the principle to analysis of nonequilibrium systems will be discussed in the second part.  相似文献   

15.
In the present paper, dynamics of generalized charged particles are studied in the presence of external electromagnetic interactions. This particular extension of the free relativistic particle model lives in Non-Commutative κκ-Minkowski space–time, compatible with Doubly Special Relativity, that is motivated to describe Quantum Gravity effects. Furthermore we have also considered the electromagnetic field to be dynamical and have derived the modified forms of Lienard–Wiechert like potentials for these extended charged particle models. In all the above cases we exploit the new and extended form of κκ-Minkowski algebra where electromagnetic effects are incorporated in the lowest order, in the Dirac framework of Hamiltonian constraint analysis.  相似文献   

16.
17.
Understanding and controlling the anisotropy energy and its effects has proved vital to the development of soft magnetic materials and their applications. Indeed, acting on composition and structure and working out specific annealing treatments, a large variety of anisotropy-governed behaviors under DC and AC excitation can be obtained. These are discussed in the present paper, together with special problems arising in the characterization of anisotropic soft magnets and a few significant applications. It is stressed how features like JJ–HH loop shape, energy losses, and magnetoresistance effects can be controlled, in crystalline and amorphous materials, by the methods of induced anisotropy. The high-frequency behavior of these materials can be strongly affected by the anisotropy field via resonant absorption of energy. This calls for tradeoff between the values of permeability and resonance frequency.  相似文献   

18.
We study the quantum correlation and quantum communication channel of both free scalar and fermionic fields in de Sitter space, while the Planckian modification presented by the choice of a particular αα-vacuum has been considered. We show the occurrence of degradation of quantum entanglement between field modes for an inertial observer in curved space, due to the radiation associated with its cosmological horizon. Comparing with standard Bunch–Davies choice, the possible Planckian physics causes some extra decrement on the quantum correlation, which may provide the means to detect quantum gravitational effects via quantum information methodology in future. Beyond single-mode approximation, we construct proper Unruh modes admitting general αα-vacua, and find a convergent feature of both bosonic and fermionic entanglements. In particular, we show that the convergent points of fermionic entanglement negativity are dependent on the choice of αα. Moreover, an one-to-one correspondence between convergent points HcHc of negativity and zeros of quantum capacity of quantum channels in de Sitter space has been proved.  相似文献   

19.
Ranking the spreading influence in complex networks   总被引:1,自引:0,他引:1  
Identifying the node spreading influence in networks is an important task to optimally use the network structure and ensure the more efficient spreading in information. In this paper, by taking into account the shortest distance between a target node and the node set with the highest kk-core value, we present an improved method to generate the ranking list to evaluate the node spreading influence. Comparing with the epidemic process results for four real networks and the Barabási–Albert network, the parameterless method could identify the node spreading influence more accurately than the ones generated by the degree kk, closeness centrality, kk-shell and mixed degree decomposition methods. This work would be helpful for deeply understanding the node importance of a network.  相似文献   

20.
The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号