首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Physics letters. [Part B]》2001,504(4):338-344
Resorting to the the Laplace center gauge (LCG) and to the Maximal-center gauge (MCG), respectively, confining vortices are defined by center projection in either case. Vortex properties are investigated in the continuum limit of SU(2) lattice gauge theory. The vortex (area) density and the density of vortex crossing points are investigated. In the case of MCG, both densities are physical quantities in the continuum limit. By contrast, in the LCG the piercing as well as the crossing points lie dense in the continuum limit. In both cases, an approximate treatment by means of a weakly interacting vortex gas is not appropriate.  相似文献   

2.
By dimensional reduction in the sense of Parisi and Sourlas (PS), the gauge fixing term in the abelian gauge of the SU(2) Yang–Mills field is reduced to a two-dimensional O(3) nonlinear model. The confinement potential is obtained from magnetic monopoles and frame fluctuations. But the source of quark confinement is frame fluctuations and not magnetic monopoles. Because the frame cannot be regarded as a fixed one, the abelian projected SU(2) Yang–Mills field turns into a gauge field – one group element being with fixed frame , another group gauging the frame . The nonperturbative part becomes a dynamical gauge field in two dimensions, giving rise to the short range linear potential. Received: 4 September 2000 / Published online: 23 February 2001  相似文献   

3.
An improved method for extracting infrared exponents from functional equations is presented. The generalizations introduced allow for an analysis of quite complicated systems such as Yang–Mills theory in the maximally Abelian gauge. Assuming the absence of cancellations in the appropriately renormalized integrals the only consistent scaling solution yields an infrared enhanced diagonal gluon propagator in support of the Abelian dominance hypothesis. This is explicitly shown for SU(2) and subsequently verified for SU(N), where additional interactions exist. We also derive the most infrared divergent scaling solution possible for vertex functions in terms of the propagators’ infrared exponents. We provide general conditions for the existence of a scaling solution for a given system and comment on the cases of linear covariant gauges and ghost–anti-ghost symmetric gauges.  相似文献   

4.
We show that, starting from known exact classical solutions of the Yang–Mills theory in three dimensions, the string tension is obtained and the potential is consistent with a marginally confining theory. The potential we obtain agrees fairly well with preceding findings in the literature but here we derive it analytically from the theory without further assumptions. The string tension is in strict agreement with lattice results and the well-known theoretical result by Karabali–Kim–Nair analysis. Classical solutions depend on a dimensionless numerical factor arising from integration. This factor enters into the determination of the spectrum and has been arbitrarily introduced in some theoretical models. We derive it directly from the solutions of the theory and is now fully justified. The agreement obtained with the lattice results for the ground state of the theory is well below 1% at any value of the degree of the group.  相似文献   

5.
We present a family of nonrelativistic Yang–Mills gauge theories in D+1D+1 dimensions whose free-field limit exhibits quantum critical behavior with gapless excitations and dynamical critical exponent z=2z=2. The ground state wavefunction is intimately related to the partition function of relativistic Yang–Mills in D   dimensions. The gauge couplings exhibit logarithmic scaling and asymptotic freedom in the upper critical spacetime dimension, equal to 4+14+1. The theories can be deformed in the infrared by a relevant operator that restores Poincaré invariance as an accidental symmetry. In the large-N limit, our nonrelativistic gauge theories can be expected to have weakly curved gravity duals.  相似文献   

6.
Borisov  A. B. 《Doklady Physics》2020,65(10):359-361
Doklady Physics - New types of 3D solutions for the classic Yang–Mills equations in the Faddeev–Niemi reformulation are found. In a particular case, these solutions describe 3D vortices.  相似文献   

7.
We give a detailed derivation of the Boltzmann equation, and in particular its collision integral, in classical field theory. We first carry this out in a scalar theory with both cubic and quartic interactions and subsequently in a Yang–Mills theory. Our method does not rely on a doubling of the fields, rather it is based on a diagrammatic approach representing the classical solution to the problem.  相似文献   

8.
9.
In this Letter, we consider lattice versions of the decomposition of the Yang–Mills field a la Cho–Faddeev–Niemi, which was extended by Kondo, Shinohara and Murakami in the continuum formulation. For the SU(N)SU(N) gauge group, we propose a set of defining equations for specifying the decomposition of the gauge link variable and solve them exactly without using the ansatz adopted in the previous studies for SU(2)SU(2) and SU(3)SU(3). As a result, we obtain the general form of the decomposition for SU(N)SU(N) gauge link variables and confirm the previous results obtained for SU(2)SU(2) and SU(3)SU(3).  相似文献   

10.
We study the behaviour of Yang–Mills theory under the inclusion of gravity. In the weak-gravity limit, the running gauge coupling receives no contribution from the gravitational sector, if all symmetries are preserved. This holds true with and without cosmological constant. We also show that asymptotic freedom persists in general field-theory-based gravity scenarios including gravitational shielding as well as asymptotically safe gravity.  相似文献   

11.
For a deconfining thermal SU(2) Yang–Mills plasma we discuss the role of (anti)calorons in introducing non-thermal behavior effectively described in terms of Planck’s quantum of action ??. This non-thermality cancels exactly between the ground-state estimate and its free quasiparticle excitations. Kinematic constraints in 4-vertex scattering and the counting of radial loop variables versus the number of independent constraints on them are re-visited. Next, we consider thermal 2→222 one-loop scattering of the modes remaining massless upon the (anti)caloron induced adjoint Higgs mechanism (thermal ground state after spatial coarse graining). Starting with stringent analytical arguments, we are able to exclude the contribution to photon–photon scattering from diagrams containing at least one three-vertex and, in a next step, a vast majority of all possible configurations involving two four-vertices. By numerical analysis we show that the remaining contribution of the overall S channel is severely suppressed compared those of the T and U channels, meaning that the creation of a pair of massive vector modes by a pair of photons and vice versa practically does not occur in the Yang–Mills plasma. For the T and U channels the domain of loop integration represents less than 10−7107 times the volume of the unconstrained integration region. The thus introduced photon–photon correlation should affect the Cosmic Microwave Background’s polarization at low redshift. An adaption of the here-developed methods to the analysis of irreducible bubble diagrams could prove the conjecture of hep-th/0609033 on the termination of the loop expansion of thermodynamical quantities at a finite irreducible order.  相似文献   

12.
13.
We study the four-dimensional Yang–Mills theory in the presence of a three-dimensional membrane of fermions by lattice Monte Carlo simulations. We analyze the phase structure of this theory at finite temperature. Below the phase transition temperature of the pure Yang–Mills theory, we obtain an unconventional phase with spatially-nonuniform vacuum. In this phase, the expectation value of the Polyakov loop is finite on the membrane, and it exponentially decays to zero outside the membrane.  相似文献   

14.
We construct the most general reducible connection that satisfies the self-dual Yang–Mills equations on a simply-connected, open subset of flat mathbbR4{mathbb{R}^4}. We show how all such connections lie in the orbit of the flat connection on mathbbR4{mathbb{R}^4} under the action of non-local symmetries of the self-dual Yang–Mills equations. Such connections fit naturally inside a larger class of solutions to the self-dual Yang–Mills equations that are analogous to harmonic maps of finite type.  相似文献   

15.
16.
We review the infrared properties of the pure Yang–Mills correlators and discuss recent results concerning the two classes of low-momentum solutions for them reported in literature, i.e. decoupling and scaling solutions. We will mainly focus on the Landau gauge and pay special attention to the results inferred from the analysis of the Dyson–Schwinger equations of the theory and from “quenched” lattice QCD. The results obtained from properly interplaying both approaches are strongly emphasized.  相似文献   

17.
The two-point gauge correlation function in Yang–Mills–Chern–Simons theory in three dimensional Euclidean space is analysed by taking into account the non-perturbative effects of the Gribov horizon. In this way, we are able to describe the confinement and de-confinement regimes, which naturally depend on the topological mass and on the gauge coupling constant of the theory.  相似文献   

18.
By employing the higher (N?5N?5)-dimensional version of the Wu–Yang ansatz we obtain black hole solutions in the spherically symmetric Einstein–Yang–Mills (EYM) theory. Although these solutions were found recently by other means, our method provides an alternative way in which one identifies the contribution from the Yang–Mills (YM) charge. Our method has the advantage to be carried out analytically as well. We discuss some interesting features of the black hole solutions obtained.  相似文献   

19.
We analyze the Chern–Simons-like term generation in the CPT-odd Lorentz-violating Yang–Mills theory interacting with fermions. Moreover, we study the anomalies of this model as well as its quantum stability. The whole analysis is performed within the algebraic renormalization theory, which is independent of the renormalization scheme. In addition, all results are valid to all orders in perturbation theory. We find that the Chern–Simons-like term is not generated by radiative corrections, just like its Abelian version. Additionally, the model is also free of gauge anomalies and quantum stable.  相似文献   

20.
We construct the most general reducible connection that satisfies the self-dual Yang–Mills equations on a simply-connected, open subset of flat ${\mathbb{R}^4}$ . We show how all such connections lie in the orbit of the flat connection on ${\mathbb{R}^4}$ under the action of non-local symmetries of the self-dual Yang–Mills equations. Such connections fit naturally inside a larger class of solutions to the self-dual Yang–Mills equations that are analogous to harmonic maps of finite type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号